Monthly 11356

April 2008, pp. 365.

Toshio Nakata
Department of Mathematics, Fukuoka University of Education, Akama-Bunkyomachi, Munakata, Fukuoka, 811-4192, JAPAN.

(June 12, 2008)
11356. Proposed by Michael Poghosyan, Yerevan State University, Yerevan, Armenia. Prove that for nay positive integer n,

$$
\sum_{k=0}^{n} \frac{\binom{n}{k}^{2}}{(2 k+1)\binom{2 n}{2 k}}=\frac{2^{4 n}(n!)^{4}}{(2 n)!(2 n+1)!}
$$

Solution by Toshio Nakata, Fukuoka University of Education, Fukuoka, Japan. Using hypergeometric series, we have

$$
\sum_{k=0}^{n} \frac{\binom{n}{k}^{2}}{(2 k+1)\binom{2 n}{2 k}}={ }_{3} F_{2}\left[\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2},-n \\
\frac{3}{2},-n+\frac{1}{2}
\end{array} \right\rvert\, 1\right]=\frac{\left(\frac{3}{2}-\frac{1}{2}\right)^{\bar{n}}\left(\frac{3}{2}-\frac{1}{2}\right)^{\bar{n}}}{\left(\frac{3}{2}\right)^{\bar{n}}\left(\frac{3}{2}-\frac{1}{2}-\frac{1}{2}\right)^{\bar{n}}}=\frac{2^{4 n}(n!)^{4}}{(2 n)!(2 n+1)!}
$$

where $x^{\bar{n}}=x(x+1) \cdots(x+n-1)$. The second equality holds by Saalschürtz's identity (see R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Equation (5.97)).

