Monthly 11369

June-July 2008, pp. 567.

Toshio Nakata

Department of Mathematics, Fukuoka University of Education, Akama-Bunkyomachi, Munakata, Fukuoka, 811-4192, JAPAN.
(August 11, 2008)
11369. Proposed by Donald Knuth, Stanford University, Stanford, CA. Prove that for all real t, and all $\alpha \geq 2$,

$$
e^{\alpha t}+e^{-\alpha t}-2 \leq\left(e^{t}+e^{-t}\right)^{\alpha}-2^{\alpha}
$$

Solution by Toshio Nakata, Fukuoka University of Education, Fukuoka, Japan. Fix $\alpha \geq 2$. Since

$$
\begin{aligned}
(\mathrm{LHS}) & =2(\cosh \alpha t-1)=2 \alpha \int_{0}^{t} \sinh \alpha x d x \\
(\mathrm{RHS}) & =(2 \cosh t)^{\alpha}-2^{\alpha}=2 \alpha \int_{0}^{t}(2 \cosh x)^{\alpha-1} \sinh x d x
\end{aligned}
$$

we will show

$$
\int_{0}^{t} \sinh \alpha x d x \leq \int_{0}^{t}(2 \cosh x)^{\alpha-1} \sinh x d x \quad \text { for all real } t
$$

Because $\cosh (-x)=\cosh x$ and $\sinh (-x)=-\sinh x$, we only check the above equation for $t>0$. Comparing each integrand, we will show

$$
\frac{\sinh \alpha x}{\sinh x} \leq(2 \cosh x)^{\alpha-1} \quad \text { for } x>0
$$

Namely,

$$
\frac{e^{\alpha x}-e^{-\alpha x}}{e^{x}-e^{-x}} \leq\left(e^{x}+e^{-x}\right)^{\alpha-1} \quad \text { for } x>0
$$

Putting $e^{2 x}=s$, we have

$$
\begin{equation*}
\frac{s^{\alpha}-1}{s-1} \leq(s+1)^{\alpha-1} \quad \text { for } s>1 \tag{1}
\end{equation*}
$$

Therefore it is sufficient to show (1). Since $\alpha \geq 2$ and $s>1$ we have

$$
(s-1) \int_{s}^{s+1}(\alpha-1) x^{\alpha-2} d x \geq(s-1)(\alpha-1) s^{\alpha-2} \geq \int_{1}^{s}(\alpha-1) x^{\alpha-2} d x .
$$

Hence

$$
(s-1)\left\{(s+1)^{\alpha-1}-s^{\alpha-1}\right\} \geq s^{\alpha-1}-1 .
$$

So we obtain (1) ${ }^{1}$.
${ }^{1}$ Of course, if $\alpha \geq 2$ is integer then we have

$$
\sum_{k=1}^{\alpha-1} s^{k} \leq \sum_{k=1}^{\alpha-1}\binom{\alpha-1}{k} s^{k}
$$

The above equation is corresponding to (1).

