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Abstract

This paper investigates the expected agreement time of a probabilistic
polling game on a connected graph. Given a connected graph G with an
assignment of a value in {0, 1} to each vertex, we consider a polling game
on G that repeats the following π-polling forever, where π = (π1, · · · , πn)
is a stochastic vector, i.e., πk ≥ 0,

∑n

k=1
πk = 1: For k randomly chosen

vertices v with probability πk, synchronously and independently, update
their values to ε ∈ {0, 1} with probability N(ε)/|Γ(v)|, where Γ(v) is the
set of neighbors of v, including v itself, and N(ε) is the number of vertices
in Γ(v) whose current value is ε. Given an initial value assignment, we
give some upper bounds on the expected number of π-pollings necessary
for the system to reach a global state in which all vertices have the same
value, by using a martingale theory. We, in particular, give a good upper
bound when G is complete. Note that some special cases are known as
Wright-Fisher’s and Moran’s models in population genetics.

Keywords: agreement problem, local majority polling, graph theory, Markov
chain, martingale.

1 Introduction

Let G(V, E) be a connected undirected graph with order |V | = n < ∞. We
assign, to each vertex v ∈ V , a value ξ(v) ∈ {0, 1}. A global state is the set of
values that the vertices have and is denoted by ξ = (ξ(v1), · · · , ξ(vn)) ∈ Ξ =
{0, 1}V . Let Γ(v) = {v} ∪ {u ∈ V : {u, v} ∈ E} be the set of neighbors of v,
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including v itself. The number of vertices having value ε ∈ {0, 1} at ξ is denoted
by Nξ(v, ε), i.e., Nξ(v, ε) = |{w ∈ Γ(v) : ξ(w) = ε}| and

Nξ(v, 0) + Nξ(v, 1) = |Γ(v)| for v ∈ V. (1)

Let π = (π1, · · · , πn) be a stochastic vector, i.e., πk ≥ 0,
∑n

k=1 πk = 1.
This paper discusses a probabilistic polling game on G defined as a repetitive
execution of the following probabilistic procedure named π-polling: Let ξ =
(ξ(v))v∈V ∈ Ξ be the current global state. Then k randomly chosen vertices
v ∈ V with probability πk, simultaneously and independently, update their
values ξ(v) to ε ∈ {0, 1} with probability Nξ(v, ε)/|Γ(v)|. Note that the number
of ways to choose k vertices from n vertices is

(
n
k

)
. Then we see that the

(u1, u2, · · · , un)-polling is the uniformly random polling, where ui =
(
n
i

)
/(2n−1)

for i = 1, · · · , n. So that we call (u1, · · · , un)-polling uniform polling. The
probabilistic polling game defined by δn-polling was first introduced by Peleg
in connection with distributed agreement and other related problems, where
δk = (δk,1, · · · , δk,n) is the stochastic vector satisfying that δk,j = 1 if k = j; = 0
otherwise. We regard the game as an agreement process, where an agreement is
achieved when all vertices have the same value [8]. Recently Hassin and Peleg
[4] and Nakata et al. [6] independently studied the game. Nakata et al. [6]
discussed the game defined by δk-polling for k = 1, · · · , n, while Hassin and
Peleg [4] concentrated on n-polling. Another slight difference is that in [4], the
set of neighbors Γ(v) excludes v.

The probabilistic polling game defined by π-polling is naturally formulated
in terms of Ξ-valued Markov chain {Xt}t=0,1,···, where Xt = (Xt(v))v∈V whose
component Xt(v) is the value of v at time t. We consider the probability space
(Ω,F ,Pξ) with an initial state ξ ∈ Ξ, i.e., Pξ{X0 = ξ} = 1. For π-polling, the
transition probability from ξ to η is given as follows:

p(ξ, η) = p(ξ, ξA) =
n∑

k=1

πk(
n
k

)
∑

U :A⊆U∈Subk(V )

∏

v∈U

Nξ(v, ξA(v))
|Γ(v)| , (2)

where Subk(V ) denotes the set of all k-(sub)sets X of V , i.e., Subk(V ) = {X ⊆
V : |X| = k} and

η = ξA(v) =
{

ξ(v), if v 6∈ A,
1− ξ(v), if v ∈ A.

The following is a partial list of problems concerning this Markov chain:

(I) Except for two trivial absorbing states 0 = (0, · · · , 0) and 1 = (1, · · · , 1),
are all states ξ ∈ Ξ transitive?

(II) If the answer for (I) is YES, for a given initial state ξ, calculate the ab-
sorbing probability to 0/1, i.e., the probability that all vertices agree on
value 0/1.
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(III) Estimate the agreement time T necessary for the system to reach an ab-
sorbing state, where

T = inf{t ∈ N : Xt ∈ {0,1}}. (3)

Under our definition of Γ(v), i.e., v ∈ Γ(v), the answer for (I) is obviously
YES. Under the definition of Γ(v) in [4], the answer for (I) is YES unless G is
bipartite. Hassin and Peleg, hence, studied non-bipartite graphs in [4].

As for (II), letting Absorb(ξ,1) be the absorbing probability from ξ to 1,
[4, 6] show that

Absorb(ξ,1) =
∑

v∈V :ξ(v)=1

|Γ(v)|/
∑

w∈V

|Γ(w)|. (4)

Now letting f : Ξ → {0, 1, · · · , 2|E| + |V |}, consider the functional of Xt for f ,
that is

xt = f(Xt) =
∑

v∈V :Xt(v)=1

|Γ(v)|. (5)

By [4, 6], we have
f(ξ) =

∑

η∈Ξ

p(ξ, η)f(η). (6)

Note that {Xt}t=0,1,··· is a Markov chain, however {xt}t=0,1,··· is not Markov in
general. Using Eq. (6), we have the next theorem, which plays an essential role
in proving Eq. (4).

Theorem 1 ([4, 6]) Let {Ft}t=0,1,··· be the filtration of Markov chain {Xt}t=0,1,···.
Then (xt,Ft) is a martingale. That is for any t

Eξ[xt+1|Ft] = xt Pξ-a.s.,

where Eξ[·] is the expectation with initial state ξ.

By virtue of Theorem 1, since T = inf{t : X
(k)
t ∈ {0,1}} has the stopping time

property, we apply, to xt, the optional stopping theorem [5, Corollary 3-16] to
show

Absorb(ξ,1) ·
∑

v∈V

|Γ(v)|+Absorb(ξ,0) ·0 = Eξ[xT ] = Eξ[x0] =
∑

v∈V :ξ(v)=1

|Γ(v)|.

Thus we have Eq. (4).
As for (III), let Eξ[T ] be the expected agreement time necessary for the

system to reach 0/1 from ξ. Then [6, Theorem 7] states that Eξ[T ] satisfies the
following difference equations:

Eξ[T ] =
∑

η∈Ξ

p(ξ, η)Eη[T ] + 1, E0[T ] = E1[T ] = 0. (7)

3



Thus Eξ[T ] is computable by solving a set of simultaneous linear equations with
2n − 2 variables, but obtaining its explicit form seems to be difficult.

Hassin and Peleg [4, Theorem 2] proposed an upper bound on the expected
agreement time for n-polling, by using another Markov chain H in [4] with state
space V .

Theorem 2 ([4, Theorem 2]) If the Markov chain H is reversible, then the
expected agreement time for δn-polling is O(M log n), where M is the maximal
meeting time for two random walks on G.

Note that Markov chain H in [4] is always reversible under the current set-
ting. So O(n3 log n) is an upper bound on the expected agreement time for
δn-polling (assuming the definition of neighbors in [4]), because the meeting
time is bounded by O(n3).

In this paper, we give an explicit upper bound on the expected agreement
time for π-polling (assuming the definition neighbors in this paper). The bound
depends on the initial global state ξ as well as G, so that we can obtain, for
some initial global states, a better bound than a one depending only on G, such
as the bound O(n3 log n) in [4].

The rest of the paper is organized as follows: In Section 2, we first discuss
general connected graphs and then complete graphs. The probabilistic polling
games defined by δ1- and δn-pollings on a complete graph are respectively known
as Moran’s and Wright-Fisher’s models in population genetics [1]. Thus π-
polling on the complete graph is a natural interpolation of the above two models.
Concluding remarks are given in Section 3.

2 Upper Bounds on the Expected Agreement
Time

2.1 General Connected Graphs

Let us recall an integer valued stochastic process xt from Ξ-valued Markov chain
Xt discussed in Theorem 1. Let

yt+1 = xt+1 − xt, (8)

which indicates the “efficiency” of polling at t.

Lemma 1 The following statements hold for yt.

(i) yt+1 =
∑

v∈V :Xt(v)=0,Xt+1(v)=1

|Γ(v)|−
∑

w∈V :Xt+1(w)=0,Xt(w)=1

|Γ(w)| Pξ-a.s,

(ii) Eξ[yt] = 0 for any t and Eξ[yt+1|Ft] = 0 a.s.

Proof. Item (i) is obvious since the following equality holds:

{v ∈ V : Xt(v) = 1} ∪ {v ∈ V : Xt(v) = 0, Xt+1(v) = 1}
= {v ∈ V : Xt+1(v) = 1} ∪ {v ∈ V : Xt(v) = 1, Xt+1(v) = 0}.
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Now we check Item (ii). Since (xt,Ft) is martingale, Eξ[xt] = Eξ[x0] =∑
v∈V :ξ(v)=1 |Γ(v)| for any t. Hence by definition Eξ[yt] = 0 for any t. Be-

cause of Markov property of Xt and Eq. (6), we obtain that

Eξ[yt+1|Ft] = Eξ[f(Xt+1)− f(Xt)|Ft] = Eξ[f(Xt+1)|Ft]− f(Xt)

=
∑

η∈Ξ

p(Xt, η)f(η)− f(Xt) = f(Xt)− f(Xt) = 0 a.s.

So we have the desired results.

We define the variance of yt as σ2
t = Eξ[(yt)2], which represents the “speed”

of π-polling at time t. Clearly if σ2
t is small for any t then the expected agreement

time is large. Remembering the definition of T as Eq. (3), put the non-trivial
minimum of the variation

σ2
min = min

ω∈Ω
min

1≤t≤T (ω)
σ2

t > 0.

Note that yt = 0 for t ≥ T + 1. For a technical matter, we define a new random
variable as

σ2
∗(t) =

{
tσ2

min if t ≤ T ,
Tσ2

min if t > T .

Then we have the following lemma.

Lemma 2 (x2
t − σ2

∗(t),Ft) is a submartingale.

Proof. It is clear that x2
t −σ2

∗(t) is Ft-measurable and Eξ[|f(Xt)2−σ2
∗(t)|] < ∞

for any t because of the finiteness of the graph. Since xt is Ft-measurable, we
have

Eξ

[
x2

t+1 − σ2
∗(t + 1)

∣∣∣∣Ft

]
= Eξ

[
x2

t + 2xtyt+1 + y2
t+1 − σ2

∗(t + 1)
∣∣∣∣Ft

]
(9)

= x2
t + 2xtEξ[yt+1|Ft] + Eξ[y2

t+1|Ft]−Eξ[σ2
∗(t + 1)|Ft]

= x2
t + Eξ[y2

t+1|Ft]−Eξ[σ2
∗(t + 1)|Ft].

Now we consider the case of t + 1 ≤ T . Then Eq. (9) is

x2
t + Eξ[y2

t+1|Ft]− (t + 1)σ2
min ≥ x2

t − tσ2
min = x2

t − σ2
∗(t).

On the other hand, we consider the case of t + 1 > T . Then since yt+1 = 0,
Eq. (9) is

x2
t −Eξ[Tσ2

min|Ft] = x2
t − Tσ2

min ≥ x2
t − σ2

∗(t),

because T is Ft-measurable. So we have the desired results.

Considering the structure of any connected graph, we estimate σ2
min as the

following proposition.
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Proposition 1 Let d be the minimum degree of G, i.e., d = minv∈V |Γ(v)| − 1.
Then

σ2
min ≥

d

n(n− 1)

n∑

k=1

πkk(2n− k − 1). (10)

Moreover if the polling is uniform one, that is, πk =
(
n
k

)
/(2n−1) for k = 1, · · · , n

then
σ2

min ≥
3d

4− 2−n+2
. (11)

Proof. By Item (i) of Lemma 1,

σ2
min = min

ξ∈Ξ̂
Eξ





 ∑

ξ(v)=1,X1(v)=0

|Γ(v)| −
∑

ξ(w)=0,X1(w)=1

|Γ(w)|



2

 ,

where Ξ̂ = Ξ \ {0,1}. By the definition of transition probability of Eq. (2),

σ2
min = min

ξ∈Ξ̂





n∑

k=1

πk(
n
k

)
∑

A⊆V


 ∑

ξ(v)=1,ξA(v)=0

|Γ(v)| −
∑

ξ(w)=0,ξA(w)=1

|Γ(w)|



2

∑

U :A⊆U∈Subk(V )

∏

u∈U

Nξ(u, ξA(u))
|Γ(u)|





= min
ξ∈Ξ̂





n∑

k=1

πk(
n
k

)
∑

U∈Subk(V )

∑

A⊆U


 ∑

ξ(v)=1,ξA(v)=0

|Γ(v)| −
∑

ξ(w)=0,ξA(w)=1

|Γ(w)|



2

∏

u∈U

Nξ(u, ξA(u))
|Γ(u)|

}
.

For a fixed ξ, let

V ′ = V ′
ξ = {v ∈ V : there exists w ∈ Γ(v) s.t. ξ(v) 6= ξ(w)}. (12)

Then since ξ ∈ Ξ̂, we have

|V ′| ≥ 2, Nξ(v, 0), Nξ(v, 1) ≥ 1, Nξ(v, 0)+Nξ(v, 1) = |Γ(v)| ≥ d+1, v ∈ V ′.
(13)

Thereby we deduce that

σ2
min = min

ξ∈Ξ̂





n∑

k=1

πk(
n
k

)
∑

U∈Subk(V )

∑

U∩V ′ 6=∅

∑

A⊆U


 ∑

ξ(v)=1,ξA(v)=0

|Γ(v)| −
∑

ξ(w)=0,ξA(w)=1

|Γ(w)|



2
∏

u∈U

Nξ(u, ξA(u))
|Γ(u)|





.
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For each U ∈ Subk(V ) satisfying U ∩ V ′ 6= ∅, we put

Iξ(U) =
∑

A⊆U


 ∑

ξ(v)=1,ξA(v)=0

|Γ(v)| −
∑

ξ(w)=0,ξA(w)=1

|Γ(w)|



2
∏

u∈U

Nξ(u, ξA(u))
|Γ(u)| .

Letting any element v∗ ∈ U ∩ V ′, we have that for A = A1 ∪A2

Iξ(U) =
∑

A1⊆U\{v∗}

∏

u∈U\{v∗}

Nξ(u, ξA1(u))
|Γ(u)|

∑

A2⊆{v∗}

Nξ(v∗, ξA2(v∗))
|Γ(v∗)|

×

 ∑

ξ(v)=1,ξA1∪A2 (v)=0

|Γ(v)| −
∑

ξ(w)=0,ξA1∪A2 (w)=1

|Γ(w)|



2

.

Without loss of generality, assume ξ(v∗) = 1. Then since A2 is {v∗} or ∅, we
have the estimation of the part after the second summation in Iξ(U) as

∑

A2⊆{v∗}

Nξ(v∗, ξA2(v∗))
|Γ(v∗)|


 ∑

ξ(v)=1,ξA1∪A2 (v)=0

|Γ(v)| −
∑

ξ(w)=0,ξA1∪A2 (w)=1

|Γ(w)|



2

(14)

=
Nξ(v∗, 0)
|Γ(v∗)|


 ∑

ξ(v)=1,ξA1 (v)=0

|Γ(v)| −
∑

ξ(w)=0,ξA1 (w)=1

|Γ(w)|+ |Γ(v∗)|



2

+
Nξ(v∗, 1)
|Γ(v∗)|


 ∑

ξ(v)=1,ξA1 (v)=0

|Γ(v)| −
∑

ξ(w)=0,ξA1 (w)=1

|Γ(w)|



2

.

In general, for any real number z and r ≥ 2, 1 ≤ w ≤ r,
w

r
(z + r)2 +

(
1− w

r

)
z2 = z2 + 2wr + wr = (z + w)2 + w(r − w) ≥ w(r − w).

By Eq. (1), letting

z =
∑

ξ(v)=1,ξA1 (v)=0

|Γ(v)| −
∑

ξ(w)=0,ξA1 (w)=1

|Γ(w)|, r = |Γ(v∗)|, w = Nξ(v∗, 0),

we see that Eq. (14) is greater than or equal to Nξ(v∗, 0)Nξ(v∗, 1). Therefore

Iξ(U) ≥ Nξ(v∗, 0)Nξ(v∗, 1)


 ∑

A1⊆U\{v∗}

∏

v∈U\{v∗}

Nξ(u, ξA1(u))
|Γ(u)|




= Nξ(v∗, 0)Nξ(v∗, 1) ≥ 1(d + 1− 1) = d.

Note that the above inequalities hold, by v∗ ∈ V ′ and Eq. (13). Hence

σ2
min ≥ min

ξ∈Ξ̂





n∑

k=1

πk(
n
k

)
∑

U∈Subk(V )

∑

U∩V ′ 6=∅
d



 = d

n∑

k=1

πk(
n
k

) min
ξ∈Ξ̂

|{U ∈ Subk(V ) : U ∩ V ′ 6= ∅}|
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≥ d

n∑

k=1

πk(
n
k

) |{U ∈ Subk(V ) : U ∩ {v′1, v′2} 6= ∅}| = d

n∑

k=1

πk(
n
k

)
{(

n

k

)
−

(
n− 2

k

)}

=
d

n(n− 1)

n∑

k=1

πkk(2n− k − 1).

So we have Eq. (10). It is clear that Eq. (11).

By Lemma 1 and Proposition 1, we have the following theorem:

Theorem 3 Let n and d be the order and the minimum degree of G, respec-
tively, and let Eξ[T ] be the expected agreement time of the probabilistic π-polling
game on G with an initial global state ξ. Then for any 1 ≤ k ≤ n,

Eξ[T ] ≤ n(n− 1)∑n
k=1 πkk(2n− k − 1)d


 ∑

v∈V :ξ(v)=0

|Γ(v)|




 ∑

w∈V :ξ(w)=1

|Γ(w)|

.

(15)
Moreover if the polling is uniform one, that is, πk =

(
n
k

)
/(2n−1) for k = 1, · · · , n

then

Eξ[T ] ≤ 4− 2−n+2

3d


 ∑

v∈V :ξ(v)=0

|Γ(v)|




 ∑

w∈V :ξ(w)=1

|Γ(w)|

.

Proof. By using Eq. (4) for initial state ξ ∈ Ξ̂, we obtain the expectation
of x2

t for t = 0 and T = inf{t ∈ N : Xt ∈ {0,1}} respectively:

Eξ[x2
T ] =

(∑

v∈V

|Γ(v)|
) 

 ∑

w∈V :ξ(w)=1

|Γ(w)|

 , Eξ[x2

0] =


 ∑

v∈V :ξ(v)=1

|Γ(v)|



2

.

(16)
By Lemma 1, we hence apply the optional stopping theorem [5, pp 69,

Remark] to x2
t − σ2

∗(t) to have

Eξ[x2
T − Tσ2

min] ≥ Eξ[x2
0].

By using Eq. (16) we have

Eξ[T ] ≤ Eξ[x2
T ]−Eξ[x2

0]
σ2

min

=
1

σ2
min


 ∑

v∈V :ξ(v)=0

|Γ(v)|




 ∑

w∈V :ξ(w)=1

|Γ(w)|

.

(17)
By virtue of Proposition 1, we finally obtain Eq. (15).

As we mentioned, Hassin and Peleg [4] adopt, for δn-polling and any vertex v,
the neighborhood Γ(v) that does not include v itself. For their setting, that is for
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non-bipartite graphs, we can obtain a similar result in analogy with Proposition
1 and Theorem 3:

Eξ[T ] ≤ 1
minv∈V A(v)


 ∑

v∈V :ξ(v)=0

d(v)





 ∑

v∈V :ξ(v)=1

d(v)


, (18)

where d(v) and A(v) are the degree of v and

A(v) = |{w ∈ Γ(v) \ {v} : ξ(w) = 1}||{u ∈ Γ(v) \ {v} : ξ(u) = 0}|

respectively. Since the order of right hand side of Eq. (18) is O(n4), this bound is
weaker than Theorem 2. However for some subclasses of graphs, we can obtain
better bounds for δn-polling.

Corollary 1 (dense) If d = Θ(n) then

max
ξ

Eξ[T ] = O(n3), (19)

where d is the minimum degree.

(non-dense) If D = O(1) then maxξ Eξ[T ] = O(n2), where D is the maximal
degree of the graph, that is, D = maxv∈V d(v) = maxv∈V |Γ(v)| − 1.

2.2 Complete Graphs

When G is a complete graph, a global state is characterized by the number of
1’s (i.e., vertices with value 1) in it. We therefore use the global state space
S = {0, 1, · · · , n} instead of Ξ = {0, 1}V . By the definition of π-polling, an S-
valued Markov chain, Zt, is associated. Let p(i, j) be the transition probability
from global state i ∈ S to j ∈ S, that is

p(i, j) = P{Zt+1 = j|Zt = i}. (20)

Lemma 3 p(i, j) = 1, if (i, j) ∈ {(0, 0), (n, n)},

p(i, j) =
n∑

k=1

πk(
n
k

)
min{k,i}∑

l=max{0,k+i−n}

(
n− i

k − l

)(
i

l

)(
k

j − i + l

)(
i

n

)j−i+l (
1− i

n

)k−j+i−l

,

(21)

if
{

(i, j) : 1 ≤ i ≤ n − 1, i − min{k, i} ≤ j ≤ k + i − max{0, k + i −

n} for some k with πk > 0
}

, and p(i, j) = 0 otherwise.

Proof. By definition p(0, 0) = p(1, 1) = 1 holds. The distribution concerning
π-polling is hypergeometrical: Let us randomly select k vertices from V with
probability πk constructed by i vertices with value 1 and n − i vertices with
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value 0. Then the probability that exactly l vertices in the selected k vertices
have value 1 is (

n− i

k − l

)(
i

l

)(
n

k

)−1

, (22)

where max{0, k + i− n} ≤ l ≤ min{k, i}. Let m be the number of vertices with
value 1 after updating the selected k vertices. The probability of obtaining m
vertices with value 1 is calculated by the binomial distribution with parameter
i/n, that is, (

k

m

)(
i

n

)m (
1− i

n

)k−m

, 0 ≤ m ≤ k, (23)

because of the completeness of the graph. Moreover the changing number of
vertices with value 1 is m − l for the update. On the other hand, assuming
the transition from i to j, we have that m = j − i + l. Since the events of
selecting and updating are independent, the transition probability is the sum
of the product of Eqs. (22),(23) for possible terms. Hence we have Eq. (21).
Clearly the probability is 0, otherwise.

By Lemma 3, the transition probabilities for δ1- and δn-pollings are

p(i, j) =





(i/n)2 + (1− i/n)2, for i = j, i ∈ S,
i(1− i/n)/n, for j = i + 1, i− 1, i = 1, · · · , n− 1,
0, otherwise,

p(i, j) =
(

n

j

)(
i

n

)j (
n− i

n

)n−j

i, j ∈ S.

These probabilities are known as Moran’s and Wright-Fisher’s models in
population genetics, respectively (E.g., see [1] and [7, Examples 5.1.3 and 5.1.4]),
and their expected agreement times are well-known [7, pp 178]:

(δ1-polling) Enp[T ] = −n2{p log p + (1− p) log(1− p)}(1 + o(1)) = Θ(n2).

(δn-polling) Enp[T ] = −2n{p log p + (1− p) log(1− p)}(1 + o(1)) = Θ(n),

where p ∈ (0, 1) is the ratio to n of the number of 1’s in the initial state. The
following theorem that treats π-polling is an “interpolation” of them.

Theorem 4 Let T comp be the agreement time for π-polling on n-complete graphs
with an initial state satisfying that the proportional ratio of the number of 1’s
in the state to n is p ∈ (0, 1). Then

Enp[T comp] = −2 {p log p + (1− p) log(1− p)} n2(n− 1)(1 + o(1))∑n
k=1 πkk(2n− k − 1)

. (24)

Moreover if the polling is uniform one, that is, πk =
(
n
k

)
/(2n−1) for k = 1, · · · , n

then
Enp[T comp] = −4

3
{p log p + (1− p) log(1− p)} (1 + o(1))n. (25)
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Some properties are needed for the proof of Theorem 4. Recalling Eq. (20),
let Wt+1 = Zt+1 − Zt. Then we also use the following facts:

Lemma 4 For any t = 0, 1, · · · and k = 1, · · · , n, E[Wt] = 0 and

E[(Wt)2|Zt = i] =
n∑

k=1

πkk(2n− k − 1)
n− 1

i

n

(
1− i

n

)
. (26)

Moreover if πk =
(
n
k

)
/(2n − 1) for k = 1, · · · , n then

E[(Wt)2|Zt = i] =
3i

4− 2−n+2

(
1− i

n

)
. (27)

Proof. It is clear that E[Wt] = 0, since E[Zt] is independent of t. It is well-
known that the first and second moments of binomial and hypergeometrical
distributions is the following:

k∑

j=0

j

(
k

j

)
pj(1− p)k−j = kp,

k∑

j=0

j2

(
k

j

)
pj(1− p)k−j = kp{(k − 1)p + 1}, (28)

1(
n
k

)
min{k,i}∑

l=max{0,k+i−n}
l

(
n− i

k − l

)(
i

l

)
=

ki

n
, (29)

1(
n
k

)
min{k,i}∑

l=max{0,k+i−n}
l2

(
n− i

k − l

)(
i

l

)
=

ki

n

(
1 +

(k − 1)(i− 1)
n− 1

)
. (30)

Using Lemma 3, for i = 1, · · · , n− 1

E[(Wt)2|Zt = i] + i2 = E[(Zt+1)2|Zt = i] =
n∑

j=0

j2p(i, j)

=
n∑

k=1

πk(
n
k

)
min{k,i}∑

l=max{0,k+i−n}

(
n− i

k − l

)(
i

l

) k+i−l∑

j=i−l

j2

(
k

j − i + l

)(
i

n

)j−i+l (
1− i

n

)k−j+i−l

.

Letting A =
∑k+i−l

j=i−l j2
(

k
j−i+l

) (
i
n

)j−i+l (
1− i

n

)k−j+i−l
, by Eq (28),

A =
k∑

j=0

(j + i− l)2
(

k

j

)(
i

n

)j (
1− i

n

)k−j

= k

(
i

n

){
(k − 1)

i

n
+ 1

}
+ 2(i− l)k

(
i

n

)
+ (i− l)2

= l2 − 2
(

i +
ki

n

)
l +

ki

n

{
(k − 1)

i

n
+ 1 + 2i

}
+ i2.
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By Eqs (29) and (30),

E[(Wt)2|Zt = i] =
n∑

k=1

πk

{
ki

n

(
1 +

(i− 1)(k − 1)
n− 1

)
+

ki

n

(
−2i− 2ki

n

)

+
ki

n

(
(k − 1)

i

n
+ 1 + 2i

)}
=

n∑

k=1

πkk(2n− k − 1)
n− 1

i

n

(
1− i

n

)
.

Moreover Eq. (27) is straightforward.

The proof of Theorem 4 is essentially due to [1, pp 75]. The method is based
on an approximation of the solution of Eq. (7) for the transition probability in
Lemma 3. Now we follow [1, pp 75] as the proof.

Proof of Theorem 4. For sufficient large n, put i/n = p > 0. Assuming that
Zt = i and letting W = Wt/n, we have by Lemma 4,

E[W ] = 0, E[W 2] =
n∑

k=1

πkk(2n− k − 1)
n2(n− 1)

p(1− p).

For large n we can regard Tk(i) as T (p) which is twice differentiable. Then
Eq (7) is that

T (p) = E[T (p + W )] + 1, 0 < p < 1, T (0) = T (1) = 0.

Using the Taylor expansion of T (p + W ),

T (p) = E[T (p + W )] + 1 = E[T (p) + T ′(p)W + T ′′(p)W 2/2 + o(W 2))] + 1
= T (p) + T ′(p)E[W ] + T ′′(p)E[W 2]/2 + o(E[W 2]) + 1.

So we obtain

T ′′(p) = −2
n2(n− 1)(1 + o(1))∑n
k=1 πkk(2n− k − 1)

1
p(1− p)

.

Now by the boundary conditions T (0) = T (1) = 0, we have that

T (p) = 2(−p log p− (1− p) log(1− p))
n2(n− 1)(1 + o(1))∑n
k=1 πkk(2n− k − 1)

.

Eq. (25) is straightforward.

3 Conclusion

In this paper, we gave some upper bounds on the expected agreement time of
the probabilistic polling game defined by π-polling.

If the graph is uniformly dense or non-dense then the order of expected
agreement time seems not to be so large by Corollary 1. Therefore we conjecture
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that a pair of a graph and an initial global state for it that achieve the worst
expected agreement time is given in Fig. 1. The graph there is called barbell
graph, which consists of two copies of n/3-cliques connected by a path graph of
length n/3. In the initial global state, the vertices with value 0 (1) are colored
white (black). Hence there is only one edge connecting vertices with different
values.

n/3 n/3 n/3

Figure 1: A barbell graph: two copies of n/3-cliques are connected by a path
graph of length n/3. Vertices with value 0 (1) are colored white (black).

References

[1] W.J. Ewens, “Mathematical Population Genetics”, Springer, 1979.

[2] W. Feller, “An Introduction to Probability Theory and its Applications
Vol. I (3rd ed.), ” New York: John Wiley & Sons, 1950.

[3] Y. Hassin, “Probabilistic Synchronous Local Voting Processes in
Graph”, Master Thesis, Department of Applied Mathematics, The
Weizmann Institute of Science, 1998.

[4] Y. Hassin and D. Peleg, Distributed Probabilistic Polling and Applica-
tions to Proportionate Agreement, ICALP99, LNCS vol. 1644, 402-411,
(1999).

[5] J. Kemeny, L. Snell and A. Knapp, “Denumerable Markov Chains”,
Springer 1976.

[6] T. Nakata, H. Imahayashi and M. Yamashita, Repetitive Probabilis-
tic Local Majority Polling for the Agreement Problem on Weighted
Directed Graphs, Networks, vol. 35 (4),266-273, (2000).

[7] J. Norris, “Markov Chains”, Cambridge UP, 1996.

[8] D. Peleg; Local Majority Voting, Small Coalitions and Controlling
Monopolies in Graphs: A Review, Technical Report (1996)
http://www.wisdom.weizmann.ac.il/Papers/trs/CS96-12/abstract.html.

13


