
Buffon’s needle on a square lattice

The Buffon needle problem (1777) is the following. We randomly drop
a needle of unit length on a plane with a grid of parallel lines y = n (n =
0,±1,±2, . . .). What is the probability that it will intersect some line? By
setting a probability space explicitly, we get the answer is 2/π (see [1, p.100]).
The purpose of this problem is to get an approximation of π. Let X be a
number of intersections of the needle with the grid. Since X is distributed
with Pr(X = 1) = 1 − Pr(X = 0) = 2/π, the expectation and the variance
are respectively

E(X) =
2

π
and var(X) =

2

π
− 4

π2
.

A variant of this is given in [2, Problem 4.5.3, p.31]. Instead of the needle,
we drop a cross formed by welding together two unit needles perpendicularly
at their midpoints, which is called Buffon’s cross. Let Y be a number of
intersections of the cross with the grid. Along the solution [2, Solution 4.5.3,
p.192] we can obtain 

Pr(Y = 2) = 2(2−
√
2)

π
,

Pr(Y = 1) = 4(
√
2−1)
π

,

Pr(Y = 0) = 1− 2
√
2

π
,

which yield

E(Y/2) =
2

π
and var(Y/2) =

3−
√
2

π
− 4

π2
.

Note that E(Y ) = 2E(X) can be interpreted as linearity of the expectation,
since the cross is constructed by two needles of unit length (see also Barbier’s
theorem [3, p.508]). When considering Y/2 and X as unbiased estimators for
2/π, the estimator Y/2 is more efficient than X since var(Y/2) < var(X).

In this note, we propose another efficient unbiased estimator. Let us
construct a square lattice by considering two grids of parallel lines are su-
perimposed: the first grid is y = n (n = 0,±1,±2, . . .), and the second is
x = n (n = 0,±1,±2, . . .) which are perpendicular to those of the first set.
Let Z be a number of intersections of a needle of unit length with the square
lattice, and Z/2 is the estimator. This setting is due to [2, Problem 4.5.2,
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p.31] for a = b = r = 1, which is the problem of showing the probability
that the needle intersects the lattice is 3/π. It is called the Laplace exten-
sion of Buffon’s problem, which is studied by [4] with discussions of variance
for n throws of needles, and numerically and contemporarily studied by [5].
Although this problem is independent of Buffon’s cross, we regard it as a
companion problem.

Let (Ω,Pr) be a probability space, which is a little simpler than [2, Solu-
tion 4.5.2, p.191], satisfying Ω = {(x, y, θ) : x, y ∈ [0, 1/2], θ ∈ [0, π/2]} and
Pr(B) = |B|/|Ω| for the volume measurable event B ⊂ Ω, where | · | denotes
the volume. Indeed, suppose that the midpoint of the needle randomly falls
to a unit square with a random angle. Then, for (x, y, θ) ∈ Ω, x and y denote
the nearest distances between the point and the first and the second grids
respectively, and θ = min{θ′, π − θ′}, where 0 ≤ θ′ ≤ π is the angle between
the needle and the first grid. Since events for Z are described as

{Z = 2} =
∪

θ∈[0,π2 ]
{
(x, y, θ) ∈ Ω : 0 < x < cos θ

2
, 0 < y < sin θ

2

}
,

{Z = 0} =
∪

θ∈[0,π2 ]
{
(x, y, θ) ∈ Ω : cos θ

2
< x < 1

2
, sin θ

2
< y < 1

2

}
,

{Z = 1} = Ω \ ({Z = 0} ∪ {Z = 2}) ,

it turns out that
Pr(Z = 2) = |{Z=2}|

π/8
= 8

π

∫ π
2

0
cos θ
2

· sin θ
2
dθ = 1

π
,

Pr(Z = 0) = 8
π

∫ π
2

0

(
1
2
− cos θ

2

) (
1
2
− sin θ

2

)
dθ = 1− 3

π
,

Pr(Z = 1) = 2
π
.

Therefore E(Z) = 4
π
and var(Z) = 6

π
−
(
4
π

)2
hold. From this it follows that

E(Z/2) =
2

π
and var(Z/2) =

3

2π
− 4

π2
.

While estimators X,Y/2 and Z/2 are unbiased, Z/2 is the most efficient of
them because of var(Z/2) < var(Y/2) < var(X).

Note that E(Z) = 2E(X) can also be interpreted as linearity of the expec-
tation, since there exist two grids. Moreover, for the unbiased estimators Z/2
and Y/2, the inequality var(Z/2) < var(Y/2) is deduced from the inequality
Pr(Z = 2) < Pr(Y = 2) which means that the probability that the needle
intersects twice is smaller than the probability that the cross intersects twice.
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