電波望遠鏡による観測的研究Ⅱ

~IRAS22198+6336の 6.7GHz メタノールメーザフレアの観測~

中等教育教員養成課程理科専攻

1 はじめに

宇宙には数多くの星が存在している。一般に星 は、宇宙空間に漂う星間ガスから誕生する。星間 ガスは何かしらの影響によって圧縮され、その密 度が大きくなると自己重力によって重力収縮を始 める。自己収縮によって密度が大きくなると様々 な化学反応がおこり、ガス中には水素や一酸化炭 素、メタノールなどの分子が生じる。分子雲の中 でも特に密度の大きい分子雲コアの中では重力収 縮によって原子星が誕生する。原子星そのものは 非常に表面温度が高く明るいはずだが、周囲を濃 いガスに囲まれているため、外から可視光線で観 測することは困難である。しかし、中心星からの 熱放射によって温められた周囲のガスは赤外線を 放射しており、この放射を観測することで中心星 の様子を推定することができる。

今回は中質量星形成段階にあると考えられてい る天体の IRAS22198+6336 を,電波望遠鏡を用い て観測した。この天体は中心星の周囲のメタノー ルガスが 6.7GHz メタノールメーザを放射するこ とが確認されている。このメタノールメーザを観 測することで IRAS22198+6336 の様子を推定した。 このことは、可視光線での観測が難しい、星形成 の様子の解明に役立つのではないかと考えられる。

2 メーザ

2.1 発生機構

ガスに電磁波を照射したり,ガス分子同士が衝 突したりすると,ガス分子のエネルギー準位は高 い準位(励起状態)へと変化する。一般的に,励 起状態の粒子は,時間とともに特定の周波数の電 磁波を放射し,エネルギー準位が低い準位(基底 状態)となる(自然放射)ため,基底状態の粒子 数が励起状態の粒子数を上回ることはない。しか し,宇宙空間においては,近傍の電波赤外線源や 金光研究室 242317 廣瀬楽

粒子同士の衝突などの要因によって励起状態の粒 子数が基底状態の粒子数を上回ることがある。こ の状況は非常に不安定な状況であり,何らかのき っかけで励起状態の粒子が基底状態に落ち,電磁 波を照射すると,その光子が引き金となりカスケ ード式に励起状態の粒子が基底状態に落ち,非常 に強い特定周波数の電波が観測される。この現象 がメーザ(MASER; Microwave Amplification by Stimulated Emission of Radiation)である。

2.2 6.7GHz メタノールメーザ

メタノールガスによって生じるメーザの一つに 6.7GHz のものがある。このメーザの静止周波数は 6668.519MHz であり、また、メーザを起こしてい る分子ガス領域のサイズは数 AU と非常にコンパ クトであるとされている。また、発生機構は赤外 線励起、発生領域は星周円盤であるため、星形成 段階の天体の観測に役立つと考えられる。

2.3 IRAS22198+6336

今回観測対象とした IRAS22198+6336 は過去に も観測が行われており,距離,光度,質量はそれ ぞれ,764±27pc,450L_o,7M_oであることが求ま っている。また,6.7GHzメタノールメーザの観測 によって以下のことが求められている。

- (1) 非常に激しいフレアを起こす。
- (2) 34.6 日周期でフレアを起こす。
- (3) フレアのピーク時期はスペクトル成分ご とに異なる。
- (4) フレア強度の上昇と下降の様子は対称的 である。
- (5) フレアの時間変動の様子はフレアごとに 異なる。

しかし,(3)(4)(5)に関しては過去の研究における データ数が不足しており,正確性に欠ける。

3 観測

3.1 観測期間・パラメータ

過去の研究結果から IRAS22198+6336 は 2015 年 12月16日ごろにフレアを起こすことが予測され ている。また,観測天体が高度 30°以上である時 間帯もわかっている。このことを踏まえ,本研究 の観測は 2015 年12月10日 (DOY (Day Of Year of 2015) 344)から 2015 年12月17日 (DOY351) の9時 (UT (世界時; Universal Time))から14 時 (UT) に観測を行った。この際,較正天体とし て CepheusA (CepA)を利用した。

観測は山口 32m 電波望遠鏡を用いて行い,その パラメータは表 3.1 に示すとおりである。なお, 表にある[Jy]という単位は電波天文学で一般的に 使われるフラックス密度¹の単位であり,

$$1 \text{ Jy} = 10^{-26} W/m^2 Hz$$

である。

ビームサイズ [分角]	5
受信電波	両偏波
帯域幅 [MHz]	8
分光点数	8192
速度分解能 [km s ⁻¹]	0.044
システム雑音温度 [K]	40-80
往八吐明「八门	2(5 点法)
惧刀时间【刀】	12
rms ノイズレベル 1σ [Jy]	~ 1.2

¹ フラックス密度

ある単位面積を通って、単位時間あたりに流れ ていく全エネルギーをエネルギーフラックスとい い、電磁波が運ぶエネルギーの周波数依存性を示 したものがフラックス密度である。エネルギーフ ラックスFはフラックス密度を全周波数にわたり 積分したもの(F = $\int_0^\infty F_v dv$)である。時間dtに面素 dAを通過する電磁波のうち、周波数が[v,v + dv] の電磁波が運ぶエネルギー量がF_v dv dA dt である とき、F_vがフラックス密度である。

3.2 解析方法

3.2.1 ベースラインフィッティング

電波望遠鏡での観測で得られる観測データには, システムそのものが出す雑音(システム雑音)が 含まれている。そのため,観測データからシステ ム雑音を引くことで天体からのデータが得られる。 しかし,それだけでは図 3.1 に示すように,天体 からの信号以外の部分のデータがゆがんでいる。 これはバンドパス特性によるものである。このゆ がみをなくすため,OFF 点(天体がないところ) を観測したときのデータからシステム雑音を引い たもの(図 3.2)で,得られたデータを割る。この 作業をベースラインフィッティングといい,バン ドパス特性によるゆがみはなくなり図 3.3 のよう になる。

3.2.2 CepA を用いた較正

本研究で較正天体とした CepA は過去の研究か ら,1日以内の変動を起こさないことが知られて いる。今回観測した際に得られた CepA のスペク トルを図 3.4 に示す。図 3.4 に示す通り本研究中に 観測された CepA のスペクトルは,-4.1 km/s,-3.7 km/s,-2.5 km/s,-1.8 km/s の4 成分であった。

較正手順は以下のとおりである。

- (1) フラックス密度を測定する。
- (2) 基準を決めてフラックス密度を規格化する。
- (3) 規格化した点の変動の式を求める
- (4) 観測した IRAS22198+6336 のフラックス密度 を変動の式から求める。

表 3.2 に DOY347 における規格化された CepA のフラックス密度,図 3.5 にポインティングによ る変動の様子を示す。図 3.5 のように求めた近似 式に IRAS22198+6336 の観測時間を代入し、その 値で、観測された IRAS22198+6336 のフラックス 密度を割ることで、ポインティングによるフラッ クス密度の変動を較正することができる。

図 3.5 ポインティングによる変動

表 3.2 規格化した CepA のフラックス密度

<u>_</u>							
time[DAV]	規格化したフラックス密度				亚均值		
une[DA1]	-4.1 km∕s	-3.7 km∕s	-2.5 km∕s	-1.8 km/s	一方面		
0.479	1.006	1.008	0.977	1.009	1.000		
0.481	0.981	1.005	0.976	1.018	0.995		
0.483	1.000	1.016	0.981	1.009	1.001		
0.485	0.986	0.985	0.971	0.986	0.982		
0.487	0.979	0.985	0.974	0.998	0.984		
0.500	0.990	0.992	0.990	0.993	0.991		
0.502	0.979	0.980	0.980	0.995	0.984		
0.504	1.000	1.000	1.000	1.000	1.000		
0.506	1.018	1.019	1.018	1.018	1.018		
0.563	1.070	1.065	1.067	1.076	1.069		
0.565	1.067	1.081	1.068	1.080	1.074		
0.567	1.092	1.095	1.082	1.095	1.091		
0.569	1.072	1.089	1.068	1.078	1.077		
0.571	1.080	1.092	1.081	1.093	1.087		

4 結果

1回のスキャンによって得られる観測データは 図 4.1 (12月 17日 9時 46分の IRAS22198+6336 のもの)のようになる。図 4.1 においては視線速 度が,-11.0 km/s,-9.1 km/s,-8.5 km/s,-7.3 km/s の成分が観測されていることが分かる。観測期間 中にはこのほかに-16.0 km/s 成分も強度変動した。 なお,視線速度が "-"は,観測地点と信号の発 信源が相対的に近づいている運動を表している。

今回の観測においてメーザの検出基準として, フラックス密度が 3σ以上であり,かつ2チャン ネル(0.88km/s)以上の幅を持つものとした。

観測期間全体の結果は図 4.2 に示す。

5 考察

5.1 観測された成分

今回の観測において検出されたメーザ成分は5 成分(-16.7 km/s, -11.0 km/s, -9.1 km/s, -8.5 km/s, -7.3 km/s) であった。過去の研究では5つの成分 が同時に観測されたことはない。このことは、

IRAS22198+6336には少なくとも 6.7 GHz メタノ ールメーザを放射するスポットが少なくとも 5 か 所存在していることを示している。

なお,-16.7 km/s だけ他の成分より視線速度が 大きく異なるのは,このメーザを出すメタノール 雲だけ観測地点に近づく方向に公転運動している ためであると考えられる。なお,全ての成分の視 線速度が"-"であることから,全体として観測 地点の方向に運動している。

過去の研究では 5 成分全てが同時に観測されな かった理由として,観測システムの性能の問題が 考えられる。今回の観測では 3 $\sigma \approx 0.8$ Jy であった が,過去の研究では 3 $\sigma \approx 4.3$ Jy であったため,メ ーザの信号が雑音に埋もれてしまい検出されなか った可能性がある。

5.2 メーザスポットの空間分布

今回の観測では,成分ごとに検出開始時期に差 があった。これは,各メーザスポットが視線方向 にずれて分布しているためである。次のような仮 説の下,この空間分布をモデル化する。

なお、今回は各メーザスポットが中心星から半 径 Rの円周上に分布し円運動を行っていると仮定 している。この仮定は Sugiyama et al.(2014)で実例 が示されており妥当な仮定であるといえる。また、 高瀬(2012)で考えられている CWB モデルをも とに、メーザを引き起こすのは中心の連星の強度 変動であるとし、5 か所のメーザスポットは一斉 に強度変動を起こすとする。

各成分の強度変動の様子から、フラックス密度 が3σ(=0.8 Jy)を超えた時間を求める。なお、 ピーク(ある日の観測値を次の日の観測値が下回 った)が観測されていない成分は初めて観測され た時をフレア開始時期とした。表 5.1 に観測開始 時期,-16.7 km/s 成分のフレア開始時期との時間 差,時間差から算出した-16.7 km/s 成分との距離 をまとめた。なお,検出開始時期は[DOY of 2015] で表してある。また,1 au=1.496×10¹¹ m である。

表 5.1 スポット間の距離

成分[km/s]	開始時期	時間差[s]	距離[au]
-16.7	347.1797		
-11.0	349.4694	197830.1	396.45
-9.1	349.4694	197830.1	396.45
-8.5	347.7532	49550.4	99.30
-7.3	347.5042	28036.8	56.19

以上の結果から, IRAS22198+6336 の 6.7GHz メ タノールメーザの空間分布を表したモデルとして, 図 5.1 が考えられる。

図 5.1 各スポットの空間分布

なお, 観測地点は図 5.1 の下方向(全体の移動 方向と一致)であり, 全体は 12.8 km/s 程度で観測 地点に近づいてきていると考えられる。

本研究では-11.0 km/s, -9.1 km/s 成分はピークが 観測できておらず-16.7 km/s 成分との距離は同じ になっているが,過去の研究から-11.0 km/s 成分は DOY351 以降も上昇を続け, -9.1 km/s 成分のほう が早くピークを迎えると考えられるため, -11.0 km/s の方が離れていると考えられる。