FTIBBARAS. © .73 Z36bH

ASTRONOMY & ASTROPHYSICS
SUPPLEMENT SERIES

Astron. Astrophys. Suppl. Ser. 73, 365-372 (1988)

The FITS tables extension

JUNE 1988, PAGE 365

R. H. Harten (},*), P. Grosbgl (), E. W. Greisen (®) and D. C. Wells (%)

(!) The Netherlands Foundation for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo, the Netherlands
(®) European Southern Observatory, Karl-Schwarzschildstr. 2, D-8046, Garching, F.R.G.
(®) National Radio Astronomy Observatory, Edgemont Road, Charlottesville, VA 22903-2475, U.S.A.

Received July 17, acceptéd November 22, 1987

Summary. — The rules for generalized extensions for FITS (**) are used to define a FITS extension to transmit catalogs
and tables of astronomical data. This « tables extension » is a self-documenting data structure which is able to fully
describe the names, formats and units of the columns of a printable ASCII (***) text table. The potential for use of this
design to transmit relational database structures is discussed.

Key words : data processing — tape format — data transport.

1. Introduction.

The concept of utilizing a standard flexible format for the
transfer of astronomical data has proved to be appealing
and designers of software systems for astronomy want to
be able to apply it to a variety of data and information
structures. For example, several individuals and organi-
zations have advocated that FITS design concepts should
be utilized in the formatting of catalogs of astronomical
data, such as the star catalogs which are distributed by
the astronomical data centers. Commission 5 of the IAU
at the Patras meeting in 1982 appointed a « task force »
to investigate this concept. At about the same time, an
experimental extension of FITS was developed to trans-
mit source position lists and calibration tables in associa-
tion with image data. Early in 1983 it became apparent
that the two efforts should be combined in order to
specify a single format designed to transmit arbitrary
tabular data. The result of this design process is presented
in this paper.

The European FITS Committee and the Working
Group for Astronomical Software of the American
Astronomical Society agreed, by formal resolutions
adopted in 1986, to implement the tables extension
design which is described in this paper, effective on
1 January 1987. The two groups will jointly offer a tables

(*) Now at RCA Astroelectronics, Princeton, NJ, U.S.A.

(**) FITS : Flexible Image Transport System.

(***) ASCII: American Standard Code for Information
Interchange, reference ANSI X3.4-1986 or ISO 646-1983.

Send offprint requests to : P. Grosbgl.

extension resolution to IAU Commission 5 for adoption
at the IAU General Assembly meeting in Baltimore in
1988. Meanwhile, this « tables extension » is already in
production use at several observatories.

2. FITS for catalogs and tables.

There are three main classes of potential applications
which have stimulated the development of the tables
extension. First, programmers want to transfer standard
catalogs or tables such as star or source catalogs with self-
documenting column headings. The catalogs are typically
in tabular form already and have well defined formats
and layout. The second class of application includes the
need to transfer observing information such as logs,
calibration tables, intermediate tables, etc. which have a
relation to observational data. The actual observations
can easily be put into a FITS format; however, the
amount of auxiliary information is too large to be
included easily as comments and the programmer does
not want to give up the tabular form of the information.
The final application is the need to transmit tables of
results extracted from observational data by data analysis
software. For example, a number of programs exist
which can automatically detect sources in digital images
and write the computed parameters (position, flux, size,
spectral index, polarization, etc.) into output files. If
these files could be written to tape in a system indepen-
dent form, astronomers would be able to transmit such
tabular data to each other and could utilize software
which is designed to manipulate, merge, and intercom-
pare such tables. The extension to the FITS format

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data Systém

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1988A%26AS...73..365H&db_key=AST

FTIBBARAS. © .73 Z36bH

366

discussed in the following sections is designed to enable
all three of these classes of tabular data to be transferred
easily from one computing system to another.

When one analyzes the structure of catalogs or tables,
one finds that they consist of a number of rows each with
a fixed number of elements and a fixed format ; however,
the entries do not form a uniform array. What one needs
is a means of describing and referring to the contents of
each row in the catalog or table. This can be done in the
FITS context by treating the table as an array of
characters and then defining the location and format of
each field within a row of the character array. This
solution requires that all catalogs and tables be stored in
character format, which causes a significant overhead
due to format conversions. However, use of character
format rather than binary format is justified by the
simplicity of the design concept and by ease of intermix-
ing various data types in tables while avoiding inter-
change problems due to a multitude of differences in the
internal binary data formats of computers. Also, most of
the standard catalogs presently available in computer
readable form are in character format. For these reasons,
the tables extension is based on the conceptual model of
a table, containing multiple columns of numbers and
« words » with headings at the top of the columns, which
is printed on paper using a printer. The printed page is
thought of as a matrix of ASCII codes, and the tables
extension is designed to transmit and document this
matrix, with the headings being encoded in the extension
header.

The tables FITS extension uses the standard FITS
rules (see Wells et al., 1981), plus the new standard for
generalized FITS extensions (Grosbgl ez al., 1988). The
catalog is written in an extension to the main FITS
header and is preceded by an extension header which
describes the contents of the catalog. The basic concept
is as follows. The catalog or table is stored as a large
character array. Each row of the catalog or table has the
same number of characters. Each row consists of a
sequence of fields, and this sequence is the same for each
row. The formats of the different fields need not be the
same, but the format of a given field must be the samé
for all rows. Blanks are used to fill out unused space
within and between fields. When printed out, the charac-
ter array should be easily readable and it is recommended
that there be a blank between each field within a row.
The number of characters in a row and the number of
entries or rows in the table or catalog defines the size of
the character array.

Each field in a row is described by a series of keywords
which describe the name, format, character location
within a row, length and units of the information. Using

R. H. Harten et al.

Ne 3

this information, a program could search via variable
name, extract the propriate characters and convert them
to desired format and units. Because each field in the
table is separately defined and because the length of
characters in each row is fixed, it is possible to transfer
catalogs which contain a large amount of comment
information which an automatic decoding program
would skip over, yet which can be read by merely
printing the entire row. This is especially useful for
observation logs and catalogs where a fixed region for
comments can be provided. The tables format is quite

flexible, allowing one to describe the contents of any '

standard table or catalog. Extra blank characters may
need to be appended to rows of tables in order to insure
that each row contains thé same number of characters ;

-this inefficiency is justified by the requirement of regu-

larity in data structures which must be interchanged
between diverse systems. This is not a serious problem
because the format is primarily intended to be used for
the transfer of information rather than the storage of the
information.

3. The tables and catalog extension header format.

The table is written in an extension to the basic FITS
image, with XTENSION='TABLE’'. In the case of
many catalogs or tables, there will not be an image, only
an extension. But even in these cases, the basic FITS
header will still appear in order to preserve compatibility
with the older format and to describe the basic character-
istics of the FITS file. The extension begins with an
extension header which will contain information about
the size and contents of the table. This information is
provided in the form of keywords, including some of the
same keywords as those used in the main header. The
rules for the tables extension are in conformance with the
rules given in the generalized extension paper (Grosbgl
etal., 1988).

A tables extension header begins at the first byte of a
new record and will appear in the form shown below.
The first eight keywords (XTENSION through
TFIELDS) must appear, and in the order shown here.
For this extension the parameter and group count
keywords must be PCOUNT=0 and GCOUNT=1. The
keywords TBCOLnnn and TFORMnnn must appear
somewhere in the header, up to the value of
TFIELDS=kkk, in order to properly define the fields of
the table. The other keywords, EXTLEVEL, EX-
TNAME, EXTVER, TTYPEnnn, TUNITnnn,
TSCALnnn, TZEROnnn, and TNULLnnn, are all
optional. If they are missing default values will be
assumed by a reading program :

123456789012345678901234567890123456789012345678901234567890123456789012. ..

XTENSION= 'TABLE ’
BITPIX
NAXIS
NAXIS1

/ Tells the type of extension

8 / Printable ASCII codes (8 is required)

2 / The table is a matrix (2 is required)
mmmm / Width of table in characters

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

R e S W S N

S e

Ty

TR) s e e

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1988A%26AS...73..365H&db_key=AST

FTIBBARAS. © .73 Z36bH

Ne 3 THE FITS TABLES EXTENSION 367
O........ 1......... 2. ... < 4......... 5......... 6......... T.....
123456789012345678901234567890123456789012345678901234567890123456789012...
NAXIS2 = nnnn / Number of entries in table (1 is legal)
PCOUNT = 0 / Random parameter count must be 0
GCOUNT = 1 / Group count must be 1
TFIELDS = kkk / Number of fields in each row

/ (i.e., the number of separate pieces of
/ information in a row, maximum value of
/ nnn in TYPEnnn.)
EXTNAME = ’name ’ / The name of the table
EXTVER = vv / Version number of table "name" (integer)
EXTLEVEL= hh / Hierarchical level (1 is recommended)
TBCOLnnn= ccc / Starting char. pos. of field nnn
TFORMnnn= ’'qww.dd ° / Fortran format of field nnn (I,A,F,E,D)
/ (NOTE: ww is width of field nnn)
TTYPEnnn= 'type ! / Type (heading) of field nnn
TUNITnnn= ‘unit ’ / Physical units of field nnn
TSCALnnn= sss.ss / Scale factor for field nnn
TZEROnnn= zzz.zzZ / Zero point for field nnn
TNULLnnn= ’bbbbbbbb’ / Null (blank) value for, field nnn
/ (NOTE: exact match left-justified to)
/ (the width specified by TFORMnnn.)
END

The END card must appear and the remainder of the
header record which contains END should be padded
with ASCII blanks. In addition to the keywords shown
above the extension header may contain additional
keywords which describe the table, contain comments,
etc. We now give a more extended discussion of the rules
associated with the tables keywords.

— TTYPEnnn = 'name’ / The name of the nth field in
a row.
(Optional, but strongly recommended, default : ' ') It is
recommended that only letters (preferably upper case),
digits, and underscore (hexadecimal code 5F) be used in
the name. The use of identical names for different fields
should be avoided.

— TBCOLnnn = value / The beginning column of the

-~ field.

(Required) The value is the number of the starting
column of the field. The first column of a row is
numbered 1.

— TFORMnnn = 'format’ / A single value Fortran-77
format code.
(Required) This may use only the Fortran formats Iww,
Aww, Fww.dd, Eww.dd, and Dww.dd (i.e., integers,
characters, and real numbers). Numbers decoded with
the I-format may exceed the 16 bit integer range. The F-
format and E-format imply single precision (21 bit
mantissa accuracy, 6 decimal digits) and the D-format
implies double precision (53 bit mantissa accuracy, 16
decimal digits). Note that numbers coded in the F-format
style are processed correctly in the E and D-formats and

so we do not actually need the F-format, whereas we do
need to distinguish the floating point precision. The F-
format is provided for convenience. Once again : only I,
A, F, E and D formats are allowed. Formats such as 212
are not allowed ; they should be 12 and I2 (separate
fields) instead. A-format fields should be encoded as
plain text, without being enclosed in string quotes.

— TUNITnnn = 'unit’ / The units of the variable.
(Default : ') Physical unit of field e.g., 'K’ for degrees
Kelvin (see BUNIT in Wells et al., 1981).

— TSCALnnn = value / Scale factor applicable to the
value.
(Default : 1.0) Note that this keyword is not relevant for
A-format fields.

— TZEROnnn = value / Zero offset to be applied to
the value.
(Default : 0.0) Note that this keyword is not relevant for
A-format fields. The true value of field nnn is computed
as:

(value of field nnn in the table) * TSCALnnn
+ TZEROnnn

— TNULLnnn = 'null string’ / Character string to
indicate a null field.
(Optional, no default) This allows the program to
distinguish between a zero value and a nonexistent one.
The string should be left justified and is implicitly blank
filled to the width of the field (standard Fortran-77
convention). If TNULLnnn is not specified the reading

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1988A%26AS...73..365H&db_key=AST

FTIBBARAS. © .73 Z36bH

368 R. H. Harten ez al. ‘ Ne3

program should not compare field nnn with the null
string ; thus a default value is not needed. It is recom-
mended that the writing program only specifies
TNULLnnn if null values actually exist in the fields. This
will improve the efficiency of readers which then only
need to perform the string comparison for fields with
TNULLnnn. Programmers should consider what action
their table reading programs should take when they
encounter a value which is illegal. For example, suppose
the value '+ * #' is present in an I3 field but TNULLnnn
has not been specified. Probably the reading program

should report the error and default to supplying its.

internal null value.

— AUTHOR = 'name’ / Name(s) of original author |

of catalog.
(Optional, default: '’) The original author(s) of the
catalog should be given.

— REFERENC = 'reference’ / Reference of table or
catalog.
(Optional, default: '’) For published catalogs the bib-
liographic reference should be used.

The default values are assumed if the keywords are not
provided. The keywords TBCOLnnn and TFORMnnn
are required for any fields which are to be defined in the
table or catalog. If these keywords are not specified an
automatic decoding routine cannot decode the table.

Note that the width of each field is specified by the
width ww given in its format TFORMnnn. Field nnn
begins in character position TBCOLnnn and includes ww
characters. The sum of the ww widths is not required to
equal the true width of the lines of the table, NAXISI.
There is no prohibition against overlapping fields,
although the authors are unable to think of a useful
example of such usage. Reading programs should report
an error in cases where a field is specified to extend
beyond the true width NAXISI.

The format keyword, TFORMnnn, is an area where
some degree of common sense must be used by the
programmers. To keep things manageable and under-
standable, each field must have a separate format
(multiple formats such as 2I2 are not allowed). If a
distinction between + 0 and — 0 is required (i.e., decli-
nation) then the sign field should be defined separately.
This is absolutely necessary since many computers do not
know the difference between + 00 and — 00. The sign
should be defined as a character field and checked when
decoding the associated number field. Thus the decli-
nation defined in degrees/minutes/seconds format would
require four fields to be defined, each with its own
TTYPEnnn, TFORMnnn, etc. But a declination defined
as a floating point number in degrees would only require
a single field and would conform to standard FITS rules.

It is recommended that the exponents of-real numbers
consist of a D or E followed by a sign and 2 numeric
digits. Character data should be left justified, while
integers and reals should be right justified to prevent the
problem of how trailing blanks are treated in different
computers. To prevent trailing blanks from defaulting to

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

trailing zeroes, the decoding of table extension data
should be done as though the Fortran-77 OPEN state-
ment specifier. BLANK is set to NULL (i.e., blank
characters should be ignored).

For those creating a new catalog or table format, it is
recommended that there should be a blank between the
different \fields. A general rule should be that the
character array containing the table should be easy to
read in itself. This makes it possible to print out a
number of rows of a table (using the header to determine
the number of characters per row, etc.). Unfortunately,
some existing catalogs do not have the fields separated
by blanks. The FITS format is still valid and applicable
for these catalogs ; however, the simple printout option
is less attractive.

When creating a table, one may need to distinguish
between a 'null’ (or undefined) value and a zero value.
Normally, blanks in a numeric field will be interpreted as
zeroes (standard Fortran-77 rules). In those fields where
blanks should be considered to be nulls, the keyword
TNULLnnn can be used to specify a 'null’ value. Null
values must be separately specified for all fields for which
they are needed (if TNULLnnn is not defined for a field,
then all values in that field are defined). Note also that
the null value is a character string of the length ww which
is specified by TFORMnn. It is not required to be
decodable by the format specified by TFORMnnn. For
example, a null value of " x ' might be used for an I3
field.

4. Catalog column headings and units.

The values of TTYPEnnn and TUNITnnn which are
shown in the sample headers in this paper should be
regarded as examples of possible values. By keying on
the field names, TTYPEnnn, programmers can create
automatic decoding routines which read and selectively
decode the desired fields of a catalog while ignoring the
remaining information. This is an excellent means of
interfacing the information contained in catalogs with
differing formats to standard reduction programs which
would use the catalog information. This will allow users
to be able to access automatically a wide range of
astronomical data, without having to write a different
program for each catalog. For this to be completely

successful it will be useful to agree on a set of standard ;|

field names and units for the contents of catalogs. The ;

authors expect that IAU Commission 5 will produce a |

standard list of column headings and will recommend any .:

units other than the standard SI units which are needed *
for existing catalogs.

5. Table data records.

The data records are stored as a large character array,
NAXIS1 characters across by NAXIS2 characters long ¢
and with NAXIS1 varying most rapidly, starting from the
upper left corner of the table. All information is stored as
8-bit printable ASCII characters with the eighth bit (the ;

T N

T TN e e

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1988A%26AS...73..365H&db_key=AST

r TIBBAGAS, = ~737 ~365H

Ne 3

« parity » bit) set to zero (i.e., hexadecimal codes in the
range 20 through 7E). Special characters with codes
outside this range should be avoided since their meaning
can be computer system dependent. No integer ot real
data values occur in the data array. Each data record is
2880 8-bit bytes long. The data records treat the character
array as one large bit string. The data records are written
one after the other and no attempt is made to prevent
partial rows occurring in a record. If the user wishes to
force the format to provide complete rows in a data
record, then the number of characters per row must be
chosen as to divide into 2880 evenly. The final record of
the data should be padded with ASCII blanks.

6. Pointers and data structures.

It is possible to use the table format to construct more
complicated data structures. Suppose that some appli-
cation requires multiple tables with a directory. The
programmer could establish the directory as a table with
whatever value fields he needed and include a column
which would give the names of the subordinate tables
associated with each entry in the directory table. The
field would be a file name expressed as an alphanumeric
string. Such a field amounts to a pointer which is pointing
to another data structure (the subordinate table). Other
fields in the directory table could give various qualifiers
associated with the subordinate tables in order to help in
searching for classes of entries. Obviously, fields in
subordinate tables could point to yet other tables. In

THE FITS TABLES EXTENSION

369

fact, even more complicated constructions are possible.
For example, the fields in the first table could give a
column type and row number as well as the name of the
subordinate table. Such pointers effectively implement a
full relational data base. Implementors should note that
although the values of pointer fields will be fully portable,
the interpretation of the data structures which are implied
by them will be application dependent.

7. An example of the tables extension format.

This section contains an example of how one could put
part of the AGK3 Star Cat. of Positions and Proper
Motions (Dieckvoss, 1975) into FITS format. Each row
of the catalog contains sixteen items, which are described
in sixteen fields. Two of the fields contain information in
character format and the remaining fields contain nu-
merical data. The FITS header describing the catalog
and data records for three rows in the catalog are shown
in the example below.

The formatting of the value fields in the example
follows the rules of basic FITS. In particular, the
required keywords obey the required fixed format. The
optional keywords in this example also use a fixed
format, and this is a recommended practice. Note that
string values are always written with at least eight
characters, beginning in column 11.

The basic FITS header for this catalog would have the
following form :

123456789012345678901234567890123456789012345678901234567890123456789012...

SIMPLE = T
BITPIX =
NAXIS
EXTEND
ORIGIN
DATE

No

1

8
0
T

*CDS ’
'23/09/83°

NNNNNNN

COMMENT
COMMENT
, END

AGK3 Astrometric catalog,
see: W. Dieckvoss,

The extension header begins in a new record :

Standard FITS fdrmat
character

information

image data array present
There may be standard extensions
Site which wrote the tape.

Date tape was written

formatted in FITS Tables Format.
Hamburg-Bergedorf 19785.

123456789012345678901234567890123456789012345678901234567890123456789012...

XTENSION=
BITPIX =
NAXIS =
NAXIS1
NAXIS2
PCOUNT
GCOUNT
TFIELDS
EXTNAME =

"TABLE !

nu
~
O O W D

No.

No

Il
-
NNNSNSNSNSNNNS

'AGK3 ’

TTYPE1L
TBCOL1
TFORM1 =

1l
=
()
—
~ '~

Table extension
8-bits per
simple 2-D matrix

of characters per row (=74)
The number of rows (=3)
"random"
Only one group.

there are 16 fields per row
Name of the catalog

"pixel"

parameters

The star number
start
7 character field

in column 1

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1988A%26AS...73..365H&db_key=AST

FTIBBARAS. © .73 Z36bH

370

R. H. Harten et al. Ne 3

123456789012345678901234567890123456789012345678901234567890123456789012. ..

]

3

3

0. vvvnn. 1.........
TTYPE2 = 'MG
TBCOL2 =

TFORM2 = 'E4.1
TUNIT2 = ’'MAG
TTYPE3 = 'SP
TBCOL3 =

TFORM3 = ‘A2
TNULL3 =
TTYPE4 = 'RAH
TBCOL4 =

TFORM4 = '1I2
TUNIT4 = 'HR
TNULL4 = ’'99
TTYPE5 = ’'RAM
TBCOLS =

TFORMS = 'I2
TUNITS = 'MIN
TNULLS = ’99
TTYPE6 = ’'RAS
TBCOL6 =

TFORM6 = ’'E6.3
TUNIT6 = 'S
TNULL6 = '99.999
TTYPEZ = ’'DECDSIGN,
TBCOLY = =~
TFORMZ = 'A&1
TTYPES = ’DECD
TBCOL8 =

TFORM8 = 'I2
TUNIT8 = ’'DEG
TNULL8 = ’99
TTYPE9 = ’DECM
TBCOLY9 ' =

TFORM9 = 'I2
TUNITS9 = ’ARCMIN
TNULL9 = ’99
TTYPE10 = 'DECS
TBCOL10 =

TFORM10 = 'E5.2
TUNIT10 = ’ARCSEC
TNULL1O = '99.99
TTYPE1l = ’EPOCH
TBCOL1l =

TFORM11 = 'ET7.2
TUNIT11 = °’YR
TTYPE12 = °'N
TBCOL12 =

TFORM12 = 'I1

13

16

19

22

29

30

33

36

42

50

NN

NN NN NN~ NN N NN NN NN NN NN NN NN

NSNS~

~N NN

stellar magnitudes
start in column 8

xX.x SP floating point
units are magnitudes

spectral type

start in column 13

2 character field

blanck is indefinite value

right ascension hours
start in column 16

2 digit integer

units are hours

null value

right ascension minutes
start in column 19

2 digit integer

minutes of time

null value

right ascension seconds
start in column 22

xX.xXx SP floating point
seconds of time
null value

declination sign
start in column 29
character field

declination degrees
start in column 30
2 digit integer
degrees

null value

declination minutes
start in column 33
2 digit integer
minutes (angle)
null value

declination seconds
start in column 36
xx.xxx SP floating point
seconds (angle)

null value

epoch of positions

start in column 42
xxxx.xx SP floating point
units are years

no. photo. obs.
start in column 50
one digit integer

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

PR

TR AR T

S TN R

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1988A%26AS...73..365H&db_key=AST

T TIBBAGAS, ©.-73: T 365H

Ne3 THE FITS TABLES EXTENSION 371
0........ 1......... 2.0, 3......... 4...... ... 8. ... 6......... 7.
12345678901234567890123456789012345678901234567890123456789012345678901234
TTYPE13 = ’'RAPM ’ / proper motion in r.a.

TBCOL13 = 852 / start in column 52
TFORM13 = ’'E4.3 ! / .xxx SP floating point
TUNIT13 = ’ARCSEC.YR-1’ / units are arc-seconds/yr
TNULL13 = '9999 ’ / null value
TTYPE14 = °’DECPM ’ / proper motion in dec.
TBCOL14 = 87 / start in column 57
TFORM14 = 'E4.0 ’ / xxx. SP floating point
TUNIT14 = ’'ARCSEC.YR-1’ / units are arc-seconds/yr
TSCAL14 = 0.001 / scale factor = 0.001

/ (Note use of scale factor!)
TNULL14 = °’'9999 ’ / null value
TTYPE1S = ’'DEPOCH ' / difference in epoch AGK3-AGK2
TBCOL1S = 62 / start in column 62
TFORM15 = 'ES5.2 ’ / xx.xx SP floating point
TUNIT15 = ’YR ’ / unit is years
TTYPE16 = 'BD ’ / Bonner Durch. star number
TBCOL16 = 68 / start in column 68
TFORM16 = 'AT ’ / 7 character field
TNULL16 = ' ’ / blanks indicate null
RUTHOR = ’'W. Dieckvoss’
REFERENC= 'AGK3 Astrometric catalog, Hamburg-Bergedorf, 1975’
DATE = ’14/07/82° / date file was generated
END

The extension header shown above has 102 lines and
therefore will be written in 3 logical records of 2880
bytes. (The third record will be padded with 6 blank

lines). The actual character data of the catalog would

begin at the start of the next record. The three lines of 74
characters each (taken from page 46 of Diecknoss, 1975)
will be in the first 222 bytes of the record.

12345678901234567890123456789012345678901234567890123456789012345678901234

+82457 11.4 G5 15 30 57.480 +82 15 06
+82458 11.4 F5 15 32 41.150 +82 10 17
+82459 12.1

Note that the spectral type field of the third line is
blank, which is a null (see keyword TNULL3 above).
The remaining 2658 bytes of the record should contain
ASCII blanks and a tapemark with follow. The FITS file
will contain a total of five records : the basic header in
the first record, then three extension header records, and
finally one table data record.

8. Conclusions.

The tables extension to the FITS format provides an
easy-to-use and convenient means of transferring catalog
and tabular information between different computing

.18 1960.37 2 —005 +006 29.99 +82 459
.17 1958.36 2 —010 +004 27.97 +82 460
15 32 42.107 +82 40 28.

83 1960.37 2 —018 +004 29.99 +82 461

facilities. The format treats the contents of the tables as a
character array. The keywords define the different fields
and provide information on the format, units and scale
factors. These features facilitate the automatic retrieval
and processing of information from astronomical catalogs
and from tables created during the automated analysis of
observational data.

Acknowledgements.

The authors would like to thank F. Ochsenbein, W.
Warren and K. Tritton for their detailed comments on
early versions of this paper and on the general problem
of encoding and distributing tables and catalogs.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1988A%26AS...73..365H&db_key=AST

FTIBBARAS. © .73 Z36bH

372 R. H. Harten et al. Ne 3

References

Dieckvoss, W. : 1975, AGK3 - Star Catalog of Positions and Proper Motions North of — 2.5 Declination Vol. 1, Hamburger

Sternwarte, Hamburg.
GREISEN, E. W., HARTEN, R. H. : 1981, Astron. Astrophys. Suppl. Ser. 44, 371.
GRrosB@L, P., HARTEN, R. H., GREISEN, E. W., WELLS, D. C. : 1988, Astron. Astrophys. Suppl. Ser. (this issue). IAU Inf. Bull.

No. 49, 14, 1983.
WELLS, D. C., GREISEN, E. W., HARTEN, R. H. : 1981, Astron. Astrophys. Suppl. Ser. 44, 363.

© European Southern Observatory * Provided by the NASA Astrophysics Data System

R R R RN B R YRR~ AT s s+ e

P

T

v

R R e SN

TR TN

TR AT e e -

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1988A%26AS...73..365H&db_key=AST

