
Definition of the Flexible Image Transport
System (FITS)

FITS Standard

Version 3.0 (DRAFT)

2007 July 18

FITS Working Group
Commission 5: Documentation and Astronomical Data

International Astronomical Union
http://fits.gsfc.nasa.gov/iaufwg/



FITS Standard



CONTENTS i

Contents

1 Introduction 1
1.1 Brief History of FITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Version History of this Document . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Definitions, Acronyms, and Symbols 7
2.1 Conventions used in this document . . . . . . . . . . . . . . . . . . . . . 7

2.2 Defined Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 FITS File Organization 13
3.1 Overall File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Individual FITS Structures . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Primary Header and Data Unit . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Primary Header . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Primary Data Array . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Requirements for Conforming Extensions . . . . . . . . . . . . . 15
3.4.2 Standard Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.3 Order of Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Special Records (Deprecated) . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Physical Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6.1 Bitstream Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.2 Sequential Media . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 Restrictions on Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Headers 19

4.1 Keyword Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Character String . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

FITS Standard



ii CONTENTS

4.2.2 Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.3 Integer Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.4 Real Floating-Point Number . . . . . . . . . . . . . . . . . . . . 22

4.2.5 Complex Integer Number . . . . . . . . . . . . . . . . . . . . . . 23

4.2.6 Complex Floating-Point Number . . . . . . . . . . . . . . . . . . 23

4.3 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Construction of Units Strings . . . . . . . . . . . . . . . . . . . . 26

4.3.2 Units in Comment Fields . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Mandatory Keywords . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.2 Other Reserved Keywords . . . . . . . . . . . . . . . . . . . . . . 32

4.4.3 Additional Keywords . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Data Representation 39

5.1 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Eight-bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Sixteen-bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.3 Thirty-two-bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.4 Sixty-four-bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.5 Unsigned Integers . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 IEEE-754 Floating-Point . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Random Groups Structure 41

6.1 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Mandatory Keywords . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.2 Reserved Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Data Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Standard Extensions 45

7.1 Image Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1 Mandatory Keywords . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.2 Other Reserved Keywords . . . . . . . . . . . . . . . . . . . . . . 47

7.1.3 Data Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 The ASCII Table Extension . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2.1 Mandatory Keywords . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2.2 Other Reserved Keywords . . . . . . . . . . . . . . . . . . . . . . 49

7.2.3 Data Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.4 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.5 Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

FITS Standard



CONTENTS iii

7.3 Binary Table Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.1 Mandatory Keywords . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3.2 Other Reserved Keywords . . . . . . . . . . . . . . . . . . . . . . 58

7.3.3 Data Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.4 Data Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3.5 Variable-Length Arrays . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.6 Variable-Length Array Guidelines . . . . . . . . . . . . . . . . . 68

8 World Coordinate Systems 71

8.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 World Coordinate System Representations . . . . . . . . . . . . . . . . . 74

8.2.1 Alternative WCS Axis Descriptions . . . . . . . . . . . . . . . . . 78

8.3 Celestial Coordinate System Representations . . . . . . . . . . . . . . . 78

8.4 Spectral Coordinate System Representations . . . . . . . . . . . . . . . 81

8.4.1 Spectral Coordinate Reference Frames . . . . . . . . . . . . . . . 84

Appendixes

A Formal Syntax of Keywords 87

B Suggested Time Scale Specification 91

C Summary of Keywords 95

D ASCII Text 99

E IEEE Floating-Point Formats 101

E.1 Basic Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
E.1.1 Single . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

E.1.2 Double . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

E.2 Byte Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

F Reserved Extension Type Names 105

F.1 Standard Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

F.2 Conforming Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

F.3 Other Registered Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 106

G MIME Types 109

G.1 MIME type ‘application/fits’ . . . . . . . . . . . . . . . . . . . . . . 109

G.1.1 Recommendations for Application Writers . . . . . . . . . . . . . 110

G.2 MIME type ‘image/fits’ . . . . . . . . . . . . . . . . . . . . . . . . . . 111

FITS Standard



iv List of Tables

G.2.1 Recommendations for Application Writers . . . . . . . . . . . . . 111

G.3 File Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 115

Index 116

List of Tables

1.1 Significant milestones in the development of FITS. . . . . . . . . . . . . 3

1.2 Version history of the standard. . . . . . . . . . . . . . . . . . . . . . . 4

4.1 IAU-recommended basic units. . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Additional allowed units. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Prefixes for multiples and submultiples. . . . . . . . . . . . . . . . . . . 26

4.4 Characters and strings allowed to denote mathematical operations. . . 27

4.5 Mandatory keywords for primary header. . . . . . . . . . . . . . . . . . 28

4.6 Interpretation of valid BITPIX value. . . . . . . . . . . . . . . . . . . . 29

4.7 Example of a primary array header. . . . . . . . . . . . . . . . . . . . . 30

4.8 Mandatory keywords in conforming extensions. . . . . . . . . . . . . . . 31

4.9 Usage of BZERO to represent non-default integer data types. . . . . . . . 36

6.1 Mandatory keywords in primary header preceding random groups. . . . 42

7.1 Mandatory keywords in image extensions. . . . . . . . . . . . . . . . . 46

7.2 Mandatory keywords in ASCII table extensions. . . . . . . . . . . . . . 48

7.3 Valid TFORMn format values in TABLE extensions. . . . . . . . . . . . . . 50

7.4 Valid TDISPn format values in TABLE extensions . . . . . . . . . . . . . 52

7.5 Mandatory keywords in binary table extensions. . . . . . . . . . . . . . 55

7.6 Valid TFORMn data types in BINTABLE extensions. . . . . . . . . . . . . 57

7.7 Usage of TZEROn to represent non-default integer data types. . . . . . . 59

7.8 Valid TDISPn format values in BINTABLE extensions . . . . . . . . . . . 60

8.1 WCS and Celestial Coordinates Notation . . . . . . . . . . . . . . . . . 72

8.2 Reserved WCS Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3 Reserved Celestial Coordinate Algorithm Codes . . . . . . . . . . . . . 80

8.4 Allowed Values of RADESYSa . . . . . . . . . . . . . . . . . . . . . . . . 81

8.5 Reserved Spectral Coordinate Type Codes1 . . . . . . . . . . . . . . . . 82

8.6 Non-linear Spectral Algorithm Codes . . . . . . . . . . . . . . . . . . . 83

8.7 Spectral Reference Systems . . . . . . . . . . . . . . . . . . . . . . . . . 86

C.1 Mandatory FITS keywords . . . . . . . . . . . . . . . . . . . . . . . . . 95

FITS Standard



List of Tables v

C.2 Reserved FITS keywords . . . . . . . . . . . . . . . . . . . . . . . . . . 96
C.3 General Reserved FITS keywords . . . . . . . . . . . . . . . . . . . . . . 97

D.1 ASCII character set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

E.1 Summary of Format Parameters . . . . . . . . . . . . . . . . . . . . . . 102
E.2 IEEE Floating-Point Formats . . . . . . . . . . . . . . . . . . . . . . . . 104

FITS Standard



vi List of Tables

FITS Standard



1

Section 1

Introduction

An archival format must be utterly portable and self-describing, on the as-
sumption that, apart from the transcription device, neither the software nor
the hardware that wrote the data will be available when the data are read.
‘Preserving Scientific Data on our Physical Universe,’ p. 60. Steering Com-
mittee for the Study on the Long-Term Retention of Selected Scientific and
Technical Records of the Federal Government, [US] National Research Coun-
cil, National Academy Press 1995.

This document, hereafter referred to as the ‘standard’, describes the Flexible Image
Transport System (FITS ) which is the standard archival data format for astronomi-
cal data sets. Although FITS was originally designed for transporting image data on
magnetic tape (which accounts for the ‘I’ and ‘T’ in the name), the capabilities of the
FITS format have expanded to accommodate more complex data structures. The role
of FITS has also grown from simply a way to transport data between different analysis
software systems into the preferred format for data in astronomical archives, as well as
the on-line analysis format used by many software packages.

This standard is intended as a formal codification of the FITS format which has
been endorsed by the International Astronomical Union (IAU) for the interchange of
astronomical data [1]. It is fully consistent with all actions and endorsements of the
IAU FITS Working Group (IAUFWG) which was appointed by Commission 5 of the
IAU to oversee further development of the FITS format. In particular, this standard
defines the organization and content of the header and data units for all standard FITS
data structures: the primary array, the random groups structure, the image extension,
the ASCII table extension, and the binary table extension. It also specifies minimum
structural requirements and general principles governing the creation of new extensions.
For headers, it specifies the proper syntax for keyword records and defines required and
reserved keywords. For data, it specifies character and numeric value representations
and the ordering of contents within the byte stream.

FITS Standard



2 SECTION 1. INTRODUCTION

One important feature of the FITS format is that its structure, down to the bit
level, is completely specified in documents (such as this standard), many of which have
been published in refereed scientific journals. Given these documents, which are readily
available in hard copy form in libraries around the world as well as in electronic form
on the Internet, future researchers should be able to decode the stream of bytes in any
FITS format data file. In contrast, many other current data formats are only implicitly
defined by the software that read and write the files. If that software is not continually
maintained so that it can be run on future computer systems, then the information
encoded in those data files could be lost.

1.1 Brief History of FITS

The FITS format evolved out of the recognition that a standard format was needed
for transferring astronomical images from one research institution to another. The first
prototype developments of a universal interchange format that would eventually lead
to the definition of the FITS format began in 1976 between Don Wells at KPNO and
Ron Harten at the Netherlands Foundation for Research in Astronomy (NFRA). This
need for an image interchange format was raised at a meeting of the Astronomy section
of the U.S. National Science Foundation in January 1979, which lead to the formation
of a task force to work on the problem. Most of the technical details of the first basic
FITS agreement (with files consisting of only a primary header followed by a data array)
were subsequently developed by Don Wells and Eric Greisen (NRAO) in March 1979.
After further refinements, and successful image interchange tests between observatories
that used widely different types of computer systems, the first papers that defined the
FITS format were published in 1981 [2, 3]. The FITS format quickly became the
defacto standard for data interchange within the astronomical community (mostly on
9-track magnetic tape at that time) and was officially endorsed by the IAU in 1982 [1].
Most national and international astronomical projects and organizations subsequently
adopted the FITS format for distribution and archiving of their scientific data products.
Some of the highlights in the developmental history of FITS are shown in Table 1.1

FITS Standard



1.1. BRIEF HISTORY OF FITS 3

Table 1.1. Significant milestones in the development of FITS.

Date Milestone

1979 Initial FITS Agreement and first interchange of files
1981 Published original (single HDU) definition [2]
1981 Published random groups definition [3]
1982 Formally endorsed by the IAU [1]
1988 Defined rules for multiple extensions [4]
1988 IAU FITS Working Group (IAUFWG) established
1988 Extended to include ASCII table extensions [5]
1988 Formal IAU approval of ASCII tables [6]
1990 Extended to include IEEE floating-point data [7]
1994 Extended to multiple IMAGE array extensions [8]
1995 Extended to binary table extensions [9]
1997 Adopted 4-digit year date format [10]
2002 Adopted conventions for celestial world coordinates [11, 12]
2004 Adopted MIME types for FITS data files [13]
2005 Extended to support variable-length arrays in binary tables
2005 Adopted conventions for spectral coordinate systems [14]
2005 Extended to include 64-bit integer data type

FITS Standard



4 SECTION 1. INTRODUCTION

Table 1.2. Version history of the standard.

Version Date Status

NOST 100-0.1 1990 December 1st Draft Standard
NOST 100-0.2 1991 June 2nd Revised Draft Standard
NOST 100-0.3 1991 December 3rd Revised Draft Standard
NOST 100-1.0 1993 June NOST Standard
NOST 100-1.1 1995 September NOST Standard
NOST 100-2.0 1999 March NOST Standard
IAUFWG 2.1 2005 April IAUFWG Standard
IAUFWG 2.1b 2005 December IAUFWG Standard
IAUFWG 3.0 2007 July IAUFWG Draft Standard

1.2 Version History of this Document

The fundamental definition of the FITS format was originally contained in a series
of published papers [2, 3, 4, 5]. As FITS became more widely used, the need for a
single document to unambiguously define the requirements of the FITS format became
apparent. In 1990, the NASA Science Office of Standards and Technology (NOST) at the
Goddard Space Flight Center provided funding for a technical panel to develop the first
version of this standard document. As shown in Table 1.2, the NOST panel produced
several draft versions, culminating in the first NOST standard document, NOST 100-1.0,
in 1993. Although this document was developed under a NASA accreditation process, it
was subsequently formally approved by the IAUFWG, which is the international control
authority for the FITS format. The small update to the standard in 1995 (NOST 100-
1.1) added a recommendation on the physical units of header keyword values.

The NOST technical panel was convened a second time to make further updates and
clarifications to the standard, resulting in the NOST 100-2.0 version that was approved
by the IAUFWG in 1999 and published in 2001 [15]. In 2005, the IAUFWG formally
approved the variable-length array convention in binary tables, and a short time later
approved support for the 64-bit integers data type. New versions of the standard were
released to reflect both of these changes (versions IAUFWG 2.1 and IAUFWG 2.1b,
respectively).

Most recently, the IAUFWG appointed its own technical panel in early 2007 to
consider further modifications and updates to the standard. The changes proposed by
this panel are shown in this draft, which is intended to eventually become version 3.0 of
the FITS standard after it has been formally reviewed (and possibly further modified)
by the IAUFWG.

The latest version of the standard, as well as other information about the FITS

FITS Standard



1.2. VERSION HISTORY OF THIS DOCUMENT 5

format, can be obtained from the FITS Support Office web site at
http://fits.gsfc.nasa.gov.

FITS Standard



6 SECTION 1. INTRODUCTION

1.3 Acknowledgments

The members of the 3 technical panels that produced this standard are shown below.

First technical panel, 1990 – 1993
Robert J. Hanisch (Chair) Space Telescope Science Institute
Lee E. Brotzman Hughes STX
Edward Kemper Hughes STX
Barry M. Schlesinger Raytheon STX
Peter J. Teuben University of Maryland
Michael E. Van Steenberg NASA Goddard Space Flight Center
Wayne H. Warren Jr. Hughes STX
Richard A. White NASA Goddard Space Flight Center

Second technical panel, 1994 – 1999
Robert J. Hanisch (Chair) Space Telescope Science Institute
Allen Farris Space Telescope Science Institute
Eric W. Greisen National Radio Astronomy Observatory
William D. Pence NASA Goddard Space Flight Center
Barry M. Schlesinger Raytheon STX
Peter J. Teuben University of Maryland
Randall W. Thompson Computer Sciences Corporation
Archibald Warnock A/WWW Enterprises

Third technical panel, 2007
William D. Pence (Chair) NASA Goddard Space Flight Center
Lucio Chiappetti IASF Milano, INAF, Italy
Clive G. Page University of Leicester, UK
Richard Shaw National Optical Astronomical Obs
Elizabeth Stobie University of Arizona

FITS Standard



7

Section 2

Definitions, Acronyms, and
Symbols

2.1 Conventions used in this document

Terms or letters set in Courier font represent literal strings that appear in FITS files.
In the case of keyword names, such as ‘NAXISn’, the lower case letter represents a positive
integer index number, generally in the the range 1 to 999. The emphasized words must,
shall, should, may, recommended, and optional in this document are to be interpreted
as described in IETF standard, RFC 2119 [16].

2.2 Defined Terms

 Used to designate an ASCII space character.

ANSI American National Standards Institute.

Array A sequence of data values. This sequence corresponds to the elements in a
rectilinear, n-dimension matrix (1 ≤ n ≤ 999, or n = 0 in the case of a null array).

Array value The value of an element of an array in a FITS file, without the application
of the associated linear transformation to derive the physical value.

ASCII American National Standard Code for Information Interchange.

ASCII character Any member of the 7-bit ASCII character set.

ASCII digit One of the 10 ASCII characters ‘0’ through ‘9’ which are represented by
decimal character codes 48 through 57 (hexadecimal 30 through 39).

ASCII NULL The ASCII character that has all 8 bits set to zero.

FITS Standard



8 SECTION 2. DEFINITIONS, ACRONYMS, AND SYMBOLS

ASCII space The ASCII character for space which is represented by decimal 32 (hex-
adecimal 20).

ASCII text The restricted set of ASCII characters decimal 32 through 126 (hexadec-
imal 20 through 7E).

Basic FITS The FITS structure consisting of the primary header followed by a single
primary data array. This is also known as Single Image FITS (SIF), as opposed to
Multi-Extension FITS (MEF) files that contain one or more extensions following
the primary HDU.

Big endian The numerical data format used in FITS files in which the most signifi-
cant byte of the value is stored first followed by the remaining bytes in order of
significance.

Bit A single binary digit.

Byte An ordered sequence of eight consecutive bits treated as a single entity.

Card image An obsolete term for an 80-character keyword record derived from the 80
column punched computer cards that were prevalent in the 1960s and 1970s.

Character string A sequence of 1 or more of the restricted set of ASCII text charac-
ters, decimal 32 through 126 (hexadecimal 20 through 7E).

Conforming extension An extension whose keywords and organization adhere to the
requirements for conforming extensions defined in §3.4.1 of this standard.

Data block A 2880-byte FITS block containing data described by the keywords in the
associated header of that HDU.

Deprecated A term used to refer to obsolete structures that should not be used for
new applications but shall remain valid for use by applications that already use
the deprecated structure.

Entry A single value in an ASCII table or binary table standard extension.

Extension A FITS HDU appearing after the primary HDU in a FITS file.

Extension type name The value of the XTENSION keyword, used to identify the type
of the extension.

Field A component of a larger entity, such as a keyword record or a row of an ASCII
table or binary table standard extension. A field in a table extension row consists
of a set of zero or more table entries collectively described by a single format.

FITS Standard



2.2. DEFINED TERMS 9

File A sequence of one or more records terminated by an end-of-file indicator appro-
priate to the medium.

FITS Flexible Image Transport System.

FITS block A sequence of 2880 8-bit bytes aligned on 2880 byte boundaries in the
FITS file, most commonly either a header block or a data block. Special records
are another infrequently used type of FITS block. This block length was chosen
because it is evenly divisible by the byte and word lengths of all known computer
systems at the time FITS was developed in 1979.

FITS file A file with a format that conforms to the specifications in this document.

FITS structure One of the components of a FITS file: the primary HDU, the random
groups records, an extension, or, collectively, the special records following the last
extension.

FITS Support Office The FITS information web site that is maintained by the
IAUFWG and is currently hosted at http://fits.gsfc.nasa.gov.

Floating-point A computer representation of a real number.

Fraction The field of the mantissa (or significand) of a floating-point number that lies
to the right of its implied binary point.

Group parameter value The value of one of the parameters preceding a group in
the random groups structure, without the application of the associated linear
transformation.

HDU Header and Data Unit. A data structure consisting of a header and the data
the header describes. Note that an HDU may consist entirely of a header with no
data blocks.

Header A series of keyword records organized within one or more header blocks that
describes structures and/or data which follow it in the FITS file.

Header block A 2880-byte FITS block containing a sequence of thirty-six 80-character
keyword records.

Heap The supplemental data area following the main data table in a binary table
standard extension.

IAU International Astronomical Union.

IAUFWG International Astronomical Union FITS Working Group.

FITS Standard



10 SECTION 2. DEFINITIONS, ACRONYMS, AND SYMBOLS

IEEE Institute of Electrical and Electronic Engineers.

IEEE NaN IEEE Not-a-Number value; used to represent undefined floating-point val-
ues in FITS arrays and binary tables.

IEEE special values Floating-point number byte patterns that have a special, re-
served meaning, such as −0, ±∞, ±underflow, ±overflow, ±denormalized, ± NaN.
(See Appendix E).

Indexed keyword A keyword name that is of the form of a fixed root with an ap-
pended positive integer index number.

Keyword name The first eight bytes of a keyword record which contain the ASCII
name of a metadata quantity (unless it is blank).

Keyword record An 80-character record in a header block consisting of a keyword
name in the first 8 characters followed by an optional value indicator, value and
comment string. The keyword record shall be composed only of the restricted set
of ASCII text characters ranging from decimal 32 to 126 (hexadecimal 20 to 7E).

Mandatory keyword A keyword that must be used in all FITS files or a keyword
required in conjunction with particular FITS structures.

Mantissa Also known as significand. The component of an IEEE floating-point number
consisting of an explicit or implicit leading bit to the left of its implied binary point
and a fraction field to the right.

MEF Multi-Extension FITS , i.e., a FITS file containing a primary HDU followed by
one or more extension HDUs.

NOST NASA/Science Office of Standards and Technology.

Physical value The value in physical units represented by an element of an array and
possibly derived from the array value using the associated, but optional, linear
transformation.

Pixel Short for ‘Picture element’; a single location within an array.

Primary data array The data array contained in the primary HDU.

Primary HDU The first HDU in a FITS file.

Primary header The first header in a FITS file, containing information on the overall
contents of the file as well as on the primary data array, if present.

FITS Standard



2.2. DEFINED TERMS 11

Random Group A deprecated FITS structure consisting of a collection of ‘groups’,
where a group consists of a subarray of data and a set of associated parameters
values.

Record A sequence of bits treated as a single logical entity.

Repeat count The number of values represented in a field in a binary table standard
extension.

Reserved keyword An optional keyword that must be used only in the manner defined
in this standard.

SIF Single Image FITS , i.e., a FITS file containing only a primary HDU, without any
extension HDUs. Also known as Basic FITS .

Special records (deprecated) A series of one or more FITS blocks following the last
HDU whose internal structure does not otherwise conform to that for the primary
HDU or to that specified for a conforming extension in this standard.

Standard extension A conforming extension whose header and data content are com-
pletely specified in §7 of this standard, namely, an image extension, an ASCII table
extension, or a binary table extension.

FITS Standard



12 SECTION 2. DEFINITIONS, ACRONYMS, AND SYMBOLS

FITS Standard



13

Section 3

FITS File Organization

3.1 Overall File Structure

A FITS file shall be composed of the following FITS structures, in the order listed:

• Primary header and data unit (HDU)

• Conforming Extensions (optional)

• Other special records (optional, deprecated)

A FITS file composed of only the primary HDU is sometimes referred to as a Basic
FITS file, or a Single Image FITS (SIF) file, and a FITS file containing one or more
extensions following the primary HDU is sometimes referred to as a Multi-Extension
FITS (MEF) file.

Each FITS structure shall consist of an integral number of FITS blocks which are
each 2880 bytes (23040 bits) in length. The primary HDU shall start with the first FITS
block of the FITS file. The first FITS block of each subsequent FITS structure shall
be the FITS block immediately following the last FITS block of the preceding FITS
structure.

This standard does not impose a limit on the total size of a FITS file, nor on the
size of an individual HDU within a FITS file. Software packages that read or write
data according to this standard could be limited, however, in the size of files that are
supported. In particular, some software systems have historically only supported files
up to 231 bytes in size (approximately 2.1 GB).

3.2 Individual FITS Structures

The primary HDU and every extension HDU shall consist of 1 or more 2880-byte header
blocks immediately followed by an optional sequence of associated 2880-byte data blocks.

FITS Standard



14 SECTION 3. FITS FILE ORGANIZATION

The header blocks shall contain only the restricted set of ASCII text characters, decimal
32 through 126 (hexadecimal 20 through 7E). The ASCII control characters with decimal
values less than 32 (including the null, tab, carriage return, and line feed characters),
and the delete character (decimal 127 or hexadecimal 7F) must not appear anywhere
within a header block.

3.3 Primary Header and Data Unit

The first component of a FITS file shall be the primary HDU which always contains
the primary header and may be followed by the primary data array. If the primary data
array has zero length, as determined by the values of the NAXIS and NAXISn keywords
in the primary header (§4.4.1.1), then the primary HDU shall contain no data blocks.

3.3.1 Primary Header

The header of a primary HDU shall consist of one or more header blocks, each containing
a series of 80-character keyword records containing only the restricted set of ASCII text
characters. Each 2880-byte header block contains 36 keyword records. The last header
block must contain the END keyword (defined in §4.4.1.1) which marks the logical end
of the header. Keyword records without information (e.g., following the END keyword)
shall be filled with ASCII spaces (decimal 32 or hexadecimal 20).

3.3.2 Primary Data Array

The primary data array, if present, shall consist of a single data array with from 1 to
999 dimensions (as specified by the NAXIS keyword defined in §4.4.1.1). The random
groups convention in the primary data array is a more complicated structure and is
discussed separately in §6. The entire array of data values are represented by a contin-
uous stream of bits starting with the first bit of the first data block. Each data value
shall consist of a fixed number of bits that is determined by the value of the BITPIX

keyword (§4.4.1.1). Arrays of more than one dimension shall consist of a sequence such
that the index along axis 1 varies most rapidly, that along axis 2 next most rapidly, and
those along subsequent axes progressively less rapidly, with that along axis m, where
m is the value of NAXIS, varying least rapidly. There is no space or any other special
character between the last value on a row or plane and the first value on the next row
or plane of a multi-dimensional array. Except for the location of the first element, the
array structure is independent of the FITS block structure. This storage order is shown
schematically in Figure 3.1 and is the same order as in multi-dimensional arrays in the
Fortran programming language [17]. The index count along each axis shall begin with
1 and increment by 1 up to the value of the NAXISn keyword (§4.4.1.1).

FITS Standard



3.4. EXTENSIONS 15

A(1, 1, . . . , 1),
A(2, 1, . . . , 1),

...,
A(NAXIS1, 1, . . . , 1),
A(1, 2, . . . , 1),
A(2, 2, . . . , 1),

...,
A(NAXIS1, 2, . . . , 1),

...,
A(1, NAXIS2, . . . , NAXISm),

...,
A(NAXIS1, NAXIS2, . . . , NAXISm)

Figure 3.1 Arrays of more than one dimension shall consist of a sequence such that the
index along axis 1 varies most rapidly and those along subsequent axes progressively
less rapidly.

If the data array does not fill the final data block, the remainder of the data block
shall be filled by setting all bits to zero. The individual data values shall be stored
in big-endian byte order such that the byte containing the most significant bits of the
value appears first in the FITS file, followed by the remaining bytes, if any, in decreasing
order of significance.

3.4 Extensions

3.4.1 Requirements for Conforming Extensions

All extensions, whether or not further described in this standard, shall fulfill the follow-
ing requirements to be in conformance with this FITS standard. New extension types
should be created only when the organization of the information is such that it cannot
be handled by one of the existing extension types. A FITS file that contains extensions
is commonly referred to as a multi-extension FITS (MEF) file.

3.4.1.1 Identity

Each extension type shall have a unique type name, specified in the header by the
XTENSION keyword (§4.4.1.2). To preclude conflict, extension type names must be regis-
tered with the IAUFWG. The current list of registered extensions is given in Appendix

FITS Standard



16 SECTION 3. FITS FILE ORGANIZATION

F. An up to date list is also maintained on the FITS Support Office web site.

3.4.1.2 Size Specification

The total number of bits in the data of each extension shall be specified in the header
for that extension, in the manner prescribed in §4.4.1.2.

3.4.2 Standard Extensions

A standard extension is a conforming extension whose organization and content are
completely specified in §7 of this standard. Only one extension format shall be approved
for each type of data organization.

3.4.3 Order of Extensions

An extension may follow the primary HDU or another conforming extension. Standard
extensions and other conforming extensions may appear in any order in a FITS file.

3.5 Special Records (Deprecated)

Special records are 2880-byte FITS blocks following the last HDU of the FITS file
that have an unspecified structure that does not meet the requirements of a conforming
extension. The first 8 bytes of the special records must not contain the string ‘XTENSION’.
It is recommended that they do not contain the string ‘SIMPLE  ’. The contents of special
records are not otherwise specified by this standard.

Special records were originally designed as a way for the FITS format to evolve
by allowing new FITS structures to be implemented. Following the development of
conforming extensions, which provide a general mechanism for storing different types of
data structures in FITS format in a well defined manner, the need for other new types
of FITS data structures has been greatly reduced. Consequently, further use of special
records is deprecated.1

3.6 Physical Blocking

3.6.1 Bitstream Devices

For bitstream devices, including but not restricted to logical file systems, FITS files
shall be interpreted as a sequence of 1 or more 2880-byte FITS blocks, regardless of the
physical blocking structure of the underlying recording media. When writing a FITS

1In the event that conforming extensions prove to be too restrictive for storing certain types of data,
the IAUFWG has the authority to define any new FITS structures necessary to address the need.

FITS Standard



3.7. RESTRICTIONS ON CHANGES 17

file on media with a physical block size unequal to the 2880-byte FITS block length,
any bytes remaining in the last physical block following the end of the FITS file should
be set to zero. Similarly, when reading FITS files on such media, any bytes remaining
in the last physical block following the end of the FITS file shall be disregarded.

3.6.2 Sequential Media

The FITS format was originally developed for writing files on sequential magnetic tape
devices. The following rules on how to write to sequential media [18] are now irrelevant
to most current data storage devices.

If physically possible, FITS files shall be written on sequential media in blocks that
are from 1 to 10 integer multiples of 2880-bytes in length. If this is not possible, the
FITS file shall be written as a bitstream using the native block size of the sequential
device. Any bytes remaining in the last block following the end of the FITS file shall
be set to zero.

When reading FITS files on sequential media, any files shorter than 2880 bytes in
length (e.g., ANSI tape labels) are not considered part of the FITS files and should be
disregarded.

3.7 Restrictions on Changes

Any structure that is a valid FITS structure shall remain a valid FITS structure at all
future times. Existing FITS files that conformed to the latest version of the standard
at the time the files were created are expressly exempt from any new requirements
imposed by subsequent versions of the standard. Use of certain valid FITS structures
may be deprecated by this or future FITS standard documents. Deprecated structures
should not be used for new applications but may continue to be used by applications
that already use the structure.

FITS Standard



18 SECTION 3. FITS FILE ORGANIZATION

FITS Standard



19

Section 4

Headers

The first 2 sections of this chapter define the structure and content of header keyword
records. This is followed in §4.3 with recommendations on how physical units should be
expressed. The final section defines the mandatory and reserved keywords for primary
arrays and conforming extensions.

4.1 Keyword Records

4.1.1 Syntax

Each 80-character header keyword record shall consist of a keyword name, a value indi-
cator (only required if a value is present), an optional value, and an optional comment.
Except where specifically stated otherwise in this standard, keywords may appear in
any order. It is recommended that the order of the keywords in FITS files be preserved
during data processing operations because the designers of the FITS file may have
used conventions that attach particular significance to the order of certain keywords
(e.g., by grouping sequences of COMMENT keywords at specific locations in the header, or
appending HISTORY keywords in chronological order of the data processing steps).

A formal syntax, giving a complete definition of the syntax of FITS keyword records,
is given in Appendix A. It is intended as an aid in interpreting the text defining the
standard.

4.1.2 Components

4.1.2.1 Keyword name (bytes 1 through 8)

The keyword name shall be a left justified, 8-character, space-filled, ASCII string with no
embedded spaces. All digits 0 through 9 (decimal ASCII codes 48 to 57, or hexadecimal
30 to 39) and upper case Latin alphabetic characters ‘A’ through ‘Z’ (decimal 65 to
90 or hexadecimal 41 to 5A) are permitted; lower case characters shall not be used.

FITS Standard



20 SECTION 4. HEADERS

The underscore (‘ ’, decimal 95 or hexadecimal 5F) and hyphen (‘-’, decimal 45 or
hexadecimal 2D) are also permitted. No other characters are permitted. For indexed
keyword names that have a single positive integer index counter appended to the root
name, the counter shall not have leading zeroes (e.g.,NAXIS1, not NAXIS001).

4.1.2.2 Value Indicator (bytes 9 and 10)

If the 2 ASCII characters ‘= ’ (decimal 61 followed by decimal 32) are present in bytes 9
and 10 of the keyword record this indicates that the keyword has a value field associated
with it, unless it is one of the commentary keywords defined in §4.4.2.4 (i.e., a HISTORY,

COMMENT, or completely blank keyword name) which by definition have no value.

4.1.2.3 Value/Comment (bytes 11 through 80)

In keyword records that contain the value indicator in bytes 9 and 10, the remaining
bytes 11 through 80 of the record shall contain the value, if any, of the keyword, followed
by optional comments. Keywords that have a value indicator shall not appear more than
once within a header. In keyword records without a value indicator, bytes 9 through 80
should be interpreted as commentary text, however, this does not preclude conventions
that interpret the content of these bytes in other ways.

The value field, when present, shall contain the ASCII text representation of a literal
string constant, a logical constant, or a numerical constant, in the format specified in
§4.2. The value field may be a null field; i.e., it may consist entirely of spaces, in which
case the value associated with the keyword is undefined.

If a comment follows the value field, it must be preceded by a slash (‘/’, decimal 47
or hexadecimal 2F). A space between the value and the slash is strongly recommended.
The comment may contain any of the restricted set of ASCII text characters, decimal 32
through 126 (hexadecimal 41 through 7E). The ASCII control characters with decimal
values less than 32 (including the null, tab, carriage return, and line feed characters),
and the delete character (decimal 127 or hexadecimal 7F) must not appear anywhere
within a keyword record.

4.2 Value

The structure of the value field depends on the data type of the value. The value field
represents a single value and not an array of values. The value field must be in one
of two formats: fixed or free. The fixed-format is required for values of mandatory
keywords and is recommended for values of all other keywords.

FITS Standard



4.2. VALUE 21

4.2.1 Character String

A character string value shall be composed only of the set of restricted ASCII text
characters, decimal 32 through 126 (hexadecimal 20 through 7E) enclosed by single
quote characters (“’”, decimal 39, hexadecimal 27). A single quote is represented
within a string as two successive single quotes, e.g., O’HARA = ’O’’HARA’. Leading
spaces are significant; trailing spaces are not. This standard imposes no requirements
on the case sensitivity of character string values unless explicitly stated in the definition
of specific keywords.

If the value is a fixed-format character string, the starting single quote character must
be in byte 11 of the keyword record and the closing single quote must occur in or before
byte 80. Earlier versions of this standard also required that fixed-format characters
strings must be padded with space characters to at least a length of 8 characters so that
the closing quote character does not occur before byte 20. This minimum character
string length is no longer required, except for the value of the XTENSION keyword (e.g.,
’IMAGE   ’ and ’TABLE   ’; see §7) which must be padded to a length of 8 characters
for backward compatibility with previous usage.

Free-format character strings follow the same rules as fixed-format character strings
except that the starting single quote character may occur after byte 11. Any bytes pre-
ceding the starting quote character and after byte 10 must contain the space character.

Note that there is a subtle distinction between the following 3 keywords:

KEYWORD1= ’’ / null string keyword

KEYWORD2= ’ ’ / empty string keyword

KEYWORD3= / undefined keyword

The value of KEYWORD1 is a null, or zero length string whereas the value of the KEYWORD2
is an empty string (nominally a single space character because the first space in the
string is significant, but trailing spaces are not). The value of KEYWORD3 is undefined
and has an indeterminate data type as well, except in cases where the data type of the
specified keyword is explicitly defined in this standard.

The maximum possible length of a keyword string is 68 characters (with the opening
and closing quote characters in bytes 11 and 80, respectively). In general, no length
limit less than 68 is implied for character-valued keywords.

4.2.2 Logical

If the value is a fixed-format logical constant, it shall appear as an uppercase T or F in
byte 30. A logical value is represented in free-format by a single character consisting of
an uppercase T or F as the first non-space character in bytes 11 through 80.

FITS Standard



22 SECTION 4. HEADERS

4.2.3 Integer Number

If the value is a fixed-format integer, the ASCII representation shall be right-justified in
bytes 11 through 30. An integer consists of a ‘+’ (decimal 43 or hexadecimal 2B) or ‘−’
(decimal 45 or hexadecimal 2D) sign, followed by one or more contiguous ASCII digits
(decimal 48 to 57 or hexadecimal 30 to 39), with no embedded spaces. The leading
‘+’ sign is optional. Leading zeros are permitted, but are not significant. The integer
representation shall always be interpreted as a signed, decimal number. This standard
does not limit the range of an integer keyword value, however, software packages that
read or write data according to this standard could be limited in the range of values that
are supported (e.g., to the range that can be represented by a 32-bit or 64-bit signed
binary integer).

A free-format integer value follows the same rules as fixed-format integers except
that the ASCII representation may occur anywhere within bytes 11 through 80.

4.2.4 Real Floating-Point Number

If the value is a fixed-format real floating-point number, the ASCII representation shall
be right-justified in bytes 11 through 30.

A floating-point number is represented by a decimal number followed by an optional
exponent, with no embedded spaces. A decimal number shall consist of a ‘+’ (decimal 43
or hexadecimal 2B) or ‘–’ (decimal 45 or hexadecimal 2D) sign, followed by a sequence
of ASCII digits containing a single decimal point (‘.’), representing an integer part
and a fractional part of the floating-point number. The leading ‘+’ sign is optional.
At least one of the integer part or fractional part must be present. If the fractional
part is present, the decimal point must also be present. If only the integer part is
present, the decimal point may be omitted, in which case the floating-point number is
indistinguishable from an integer. The exponent, if present, consists of an exponent
letter followed by an integer. Letters in the exponential form (‘E’ or ‘D’)1 shall be
upper case. The full precision of 64-bit values cannot be expressed over the whole range
of values using the fixed-format. This standard does not impose an upper limit on
the number of digits of precision, nor any limit on the range of floating-point keyword
values. Software packages that read or write data according to this standard could be
limited, however, in the range of values and exponents that are supported (e.g., to the
range that can be represented by a 32-bit or 64-bit floating-point number).

A free-format floating-point value follows the same rules as a fixed-format floating-
point value except that the ASCII representation may occur anywhere within bytes 11
through 80.

1The ‘D’ exponent form is traditionally used when representing values that have more decimals
of precision or a larger magnitude than can be represented by a single-precision 32-bit floating point
number, but otherwise there is no distinction between ‘E’ or ‘D’.

FITS Standard



4.3. UNITS 23

4.2.5 Complex Integer Number

There is no fixed-format for complex integer numbers.

If the value is a complex integer number, the value must be represented as a real
part and an imaginary part, separated by a comma and enclosed in parentheses e.g.,
(123, 45). Spaces may precede and follow the real and imaginary parts. The real and
imaginary parts are represented in the same way as integers (§4.2.3). Such a represen-
tation is regarded as a single value for the complex integer number. This representation
may be located anywhere within bytes 11 through 80.

4.2.6 Complex Floating-Point Number

There is no fixed-format for complex floating-point numbers.

If the value is a complex floating-point number, the value must be represented as a
real part and an imaginary part, separated by a comma and enclosed in parentheses,
e.g., (123.23, -45.7). Spaces may precede and follow the real and imaginary parts.
The real and imaginary parts are represented in the same way as floating-point values
(§4.2.4). Such a representation is regarded as a single value for the complex floating-
point number. This representation may be located anywhere within bytes 11 through
80.

4.3 Units

When a numerical keyword value represents a physical quantity, it is recommended that
units be provided. Units shall be represented with a string of characters composed of
the restricted ASCII text character set. Unit strings can be used as values of keywords
(e.g., for the reserved keywords BUNIT, and TUNITn), as an entry in a character string
column of an ASCII or binary table extension, or as part of a keyword comment string
(see §4.3.2, below).

The units of all FITS header keyword values, with the exception of measurements
of angles, should conform with the recommendations in the IAU Style Manual [19].
For angular measurements given as floating-point values and specified with reserved
keywords, the units should be degrees (i.e., deg).

The units for fundamental physical quantities recommended by the IAU are given
in Table 4.1, and additional units that are commonly used in astronomy are given in
Table 4.2. The recommended plain text form for the IAU-recognized base units are given
in column 2 of both tables.2 All base units strings may be preceded, with no intervening
spaces, by a single character (two for deca) taken from Table 4.3 and representing scale

2These tables are reproduced from the first in a series of papers on world coordinate systems [11]
which provides examples and expanded discussion.

FITS Standard



24 SECTION 4. HEADERS

Table 4.1. IAU-recommended basic units.

Quantity Unit Meaning Notes

SI base & supplementary units
length m meter
mass kg kilogram g gram allowed
time s second
plane angle rad radian
solid angle sr steradian
temperature K kelvin
electric current A ampere
amount of substance mol mole
luminous intensity cd candela

IAU-recognized derived units
frequency Hz hertz s−1

energy J joule N m
power W watt J s−1

electric potential V volt J C−1

force N newton kg m s−2

pressure, stress Pa pascal N m−2

electric charge C coulomb A s
electric resistance Ohm ohm V A−1

electric conductance S siemens A V−1

electric capacitance F farad C V−1

magnetic flux Wb weber V s
magnetic flux density T tesla Wb m−2

inductance H henry Wb A−1

luminous flux lm lumen cd sr
illuminance lx lux lm m−2

FITS Standard



4.3. UNITS 25

Table 4.2 Additional allowed units.

Quantity Unit Meaning Notes
plane angle deg degree of arc π/180 rad

arcmin minute of arc 1/60 deg
arcsec second of arc 1/3600 deg
mas milli-second of arc 1/3 600 000 deg

time min minute 60 s
h hour 60 min = 3600 s
d day 86 400 s

† a year (Julian) 31 557 600 s (365.25 d), peta a (Pa) forbidden
† yr year (Julian) a is IAU-style

energy∗ † eV electron volt 1.6021765× 10−19 J
‡ erg erg 10−7 J

Ry rydberg 1

2

(

2πe2

hc

)2

mec
2 = 13.605692 eV

mass∗ solMass solar mass 1.9891× 1030 kg
u unified atomic mass unit 1.6605387× 10−27 kg

luminosity solLum Solar luminosity 3.8268× 1026 W
length ‡ Angstrom angstrom 10−10 m

solRad Solar radius 6.9599× 108 m
AU astronomical unit 1.49598× 1011 m
lyr light year 9.460730× 1015 m

† pc parsec 3.0857× 1016 m
events count count

ct count
photon photon
ph photon

flux density † Jy jansky 10−26 W m−2 Hz−1

† mag (stellar) magnitude
† R rayleigh 1010/(4π) photons m−2 s−1 sr−1

magnetic field †‡ G gauss 10−4 T
area pixel (image/detector) pixel

pix (image/detector) pixel
†‡ barn barn 10−28 m2

Miscellaneous units

D debye 1

3
× 10−29 C.m

Sun relative to Sun e.g., abundances
chan (detector) channel
bin numerous applications (including the 1-d analogue of pixel)
voxel 3-d analogue of pixel

† bit binary information unit
† byte (computer) byte 8 bit

adu Analog-to-digital converter
beam beam area of observation as in Jy/beam

† - addition of prefixes for decimal multiples and submultiples are allowed.
‡ - deprecated in IAU Style Manual [19] but still in use.
∗ - conversion factors from CODATA Internationally recommended values of the fundamental
physical constants 2002 (http://physics.nist.gov/cuu/Constants/).

FITS Standard



26 SECTION 4. HEADERS

Table 4.3. Prefixes for multiples and submultiples.

Submult Prefix Char Mult Prefix Char

10−1 deci d 10 deca da

10−2 centi c 102 hecto h

10−3 milli m 103 kilo k

10−6 micro u 106 mega M

10−9 nano n 109 giga G

10−12 pico p 1012 tera T

10−15 femto f 1015 peta P

10−18 atto a 1018 exa E

10−21 zepto z 1021 zetta Z

10−24 yocto y 1024 yotta Y

factors mostly in steps of 103. Compound prefixes (e.g., ZYeV for 1045 eV) must not be
used.

4.3.1 Construction of Units Strings

Compound units strings may be formed by combining strings of base units (including
prefixes, if any) with the recommended syntax described in Table 4.4. Two or more
base units strings (called str1 and str2 in Table 4.4) may be combined using the re-
stricted set of (explicit or implicit) operators that provide for multiplication, division,
exponentiation, raising arguments to powers, or taking the logarithm or square-root of
an argument. Note that functions such as log actually require dimensionless arguments,
so that log(Hz), for example, actually means log(x/1 Hz). The final units string is the
compound string, or a compound of compounds, preceded by an optional numeric mul-
tiplier of the form 10**k, 10ˆk, or 10±k where k is an integer, optionally surrounded by
parentheses with the sign character required in the third form in the absence of paren-
theses. Creators of FITS files are encouraged to use the numeric multiplier only when
the available standard scale factors of Table 4.3 will not suffice. Parentheses are used for
symbol grouping and are strongly recommended whenever the order of operations might
be subject to misinterpretation. A space character implies multiplication which can
also be conveyed explicitly with an asterisk or a period. Therefore, although spaces are
allowed as symbol separators, their use is discouraged. Note that, per IAU convention,
case is significant throughout. The IAU style manual forbids the use of more than one
solidus (/) character in a units string. However, since normal mathematical precedence
rules apply in this context, more than one solidus may be used but is discouraged.

FITS Standard



4.3. UNITS 27

Table 4.4. Characters and strings allowed to denote mathematical operations.

String Meaning

str1 str2 Multiplication
str1*str2 Multiplication
str1.str2 Multiplication
str1/str2 Division
str1**expr Raised to the power expr
str1^expr Raised to the power expr
str1expr Raised to the power expr
log(str1) Common Logarithm (to base 10)
ln(str1) Natural Logarithm

exp(str1) Exponential (estr1)
sqrt(str1) Square root

A unit raised to a power is indicated by the unit string followed, with no intervening
spaces, by the optional symbols ** or ^ followed by the power given as a numeric
expression, called expr in Table 4.4. The power may be a simple integer, with or
without sign, optionally surrounded by parentheses. It may also be a decimal number
(e.g., 1.5, 0.5) or a ratio of two integers (e.g., 7/9), with or without sign, which must
be surrounded by parentheses. Thus meters squared may be indicated by m**(2),
m**+2, m+2, m2, m^2, m^(+2), etc. and per meter cubed may be indicated by m**-3,
m-3, m^(-3), /m3, and so forth. Meters to the three-halves power may be indicated
by m(1.5), m^(1.5), m**(1.5), m(3/2), m**(3/2), and m^(3/2), but not by m^3/2 or
m1.5.

4.3.2 Units in Comment Fields

If the units of the keyword value are specified in the comment of the header keyword, it
is recommended that the units string be enclosed in square brackets (i.e., enclosed by ‘[’
and ‘]’) at the beginning of the comment field, separated from the slash (‘/’) comment
field delimiter by a single space character. An example, using a non-standard keyword,
is
EXPTIME = 1200. / [s] exposure time in seconds

This widespread, but optional, practice suggests that square brackets should be used
in comment fields only for this purpose. Nonetheless, software should not depend on
units being expressed in this fashion within a keyword comment, and software should

FITS Standard



28 SECTION 4. HEADERS

Table 4.5. Mandatory keywords for primary header.

# Keyword

1 SIMPLE = T

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
...
(other keywords)
...

last END

not depend on any string within square brackets in a comment field containing a proper
units string. If a recommendation or requirement exists within this standard for the
units of a keyword, then those units must be used.

4.4 Keywords

4.4.1 Mandatory Keywords

Mandatory keywords are required in every HDU as described in the remainder of this
subsection. They must be used only as described in this standard. Values of the
mandatory keywords must be written in fixed-format.

4.4.1.1 Primary Header

The SIMPLE keyword is required to be the first keyword in the primary header of all
FITS files. The primary header must contain the other mandatory keywords shown in
Table 4.5 in the order given. Other keywords must not intervene between the SIMPLE

keyword and the last NAXISn keyword.

SIMPLE Keyword The value field shall contain a logical constant with the value T if
the file conforms to this standard. This keyword is mandatory for the primary header
and must not appear in extension headers. A value of F signifies that the file does not
conform to this standard.

FITS Standard



4.4. KEYWORDS 29

Table 4.6. Interpretation of valid BITPIX value.

Value Data Represented

8 Character or unsigned binary integer
16 16-bit two’s complement binary integer
32 32-bit two’s complement binary integer
64 64-bit two’s complement binary integer
-32 IEEE single precision floating-point
-64 IEEE double precision floating-point

BITPIX Keyword The value field shall contain an integer. The absolute value is
used in computing the sizes of data structures. It shall specify the number of bits that
represent a data value in the associated data array. The only valid values of BITPIX are
given in Table 4.6. Writers of FITS arrays should select a BITPIX data type appropriate
to the form, range of values, and accuracy of the data in the array.

NAXIS Keyword The value field shall contain a non-negative integer no greater than
999 representing the number of axes in the associated data array. A value of zero
signifies that no data follow the header in the HDU.

NAXISn Keywords The value field of this indexed keyword shall contain a non-
negative integer representing the number of elements along axis n of a data array. The
NAXISn keywords must be present for all values n = 1,...,NAXIS, and for no other val-
ues of n. A value of zero for any of the NAXISn signifies that no data follow the header
in the HDU (however, the random groups structure described in §6 has NAXIS1 = 0,
but will have data following the header if the other NAXISn keywords are non-zero). If
NAXIS is equal to 0, there shall not be any NAXISn keywords.

END Keyword This keyword has no associated value. Bytes 9 through 80 shall be
filled with ASCII spaces (decimal 32 or hexadecimal 20). The END keyword marks the
logical end of the header and must occur in the last 2880-byte FITS block of the header.

The total number of bits in the primary data array, exclusive of fill that is needed
after the data to complete the last 2880-byte data block (§3.3.2), is given by the following
expression:

Nbits = |BITPIX| × (NAXIS1× NAXIS2× · · · × NAXISm), (4.1)

FITS Standard



30 SECTION 4. HEADERS

Table 4.7. Example of a primary array header.

Keyword Records

SIMPLE = T / file does conform to FITS standard

BITPIX = 16 / number of bits per data pixel

NAXIS = 2 / number of data axes

NAXIS1 = 250 / length of data axis 1

NAXIS2 = 300 / length of data axis 2

OBJECT = ’Cygnus X-1’

DATE = ’2006-10-22’

END

where Nbits must be non-negative and is the number of bits excluding fill, m is the
value of NAXIS, and BITPIX and the NAXISn represent the values associated with those
keywords. Note that the random groups convention in the primary array has a more
complicated structure whose size is given by Eq. 6.1. The header of the first FITS
extension in the file, if present, shall start with the first FITS block following the data
block that contains the last bit of the primary data array.

An example of a primary array header is shown in Table 4.7. In addition to the
required keywords, it includes a few of the reserved keywords that are discussed in
§4.4.2.

4.4.1.2 Conforming Extensions

All conforming extensions, whether or not further specified in this standard, must use the
keywords defined in Table 4.8 in the order specified. Other keywords must not intervene
between the XTENSION keyword and the GCOUNT keyword. The BITPIX, NAXIS, NAXISn,
and END keywords are defined in §4.4.1.1.

XTENSION Keyword The value field shall contain a character string giving the name
of the extension type. This keyword is mandatory for an extension header and must
not appear in the primary header. To preclude conflict, extension type names must
be registered with the IAUFWG. The current list of registered extensions is given in
Appendix F. An up to date list is also maintained on the FITS Support Office web site.

PCOUNT Keyword The value field shall contain an integer that shall be used in any
way appropriate to define the data structure, consistent with Eq. 4.2. In IMAGE (§7.1)

FITS Standard



4.4. KEYWORDS 31

Table 4.8. Mandatory keywords in conforming extensions.

# Keyword

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
5 PCOUNT

6 GCOUNT
...
(other keywords)
...

last END

and TABLE (§7.2) extensions this keyword must have the value 0; in BINTABLE extensions
(§7.3) it is used to specify the number of bytes that follow the main data table in the
supplemental data area called the heap. This keyword is also used in the random groups
structure (§6) to specify the number of parameters preceding each array in a group.

GCOUNT Keyword The value field shall contain an integer that shall be used in any
way appropriate to define the data structure, consistent with Eq. 4.2. This keyword
must have the value 1 in the IMAGE, TABLE and BINTABLE standard extensions defined
in §7. This keyword is also used in the random groups structure (§6) to specify the
number of random groups present.

The total number of bits in the extension data array (exclusive of fill that is needed
after the data to complete the last 2880-byte data block) is given by the following
expression:

Nbits = |BITPIX| × GCOUNT×

(PCOUNT+ NAXIS1× NAXIS2× · · · × NAXISm), (4.2)

where Nbits must be non-negative and is the number of bits excluding fill, m is the value
of NAXIS, and BITPIX, GCOUNT, PCOUNT, and the NAXISn represent the values associated
with those keywords. If Nbits > 0, then the data array shall be contained in an integral
number of 2880-byte FITS data blocks. The header of the next FITS extension in the
file, if any, shall start with the first FITS block following the data block that contains
the last bit of the current extension data array.

FITS Standard



32 SECTION 4. HEADERS

4.4.2 Other Reserved Keywords

The reserved keywords described below are optional, but if present in the header they
must be used only as defined in this standard. They apply to any FITS structure with
the meanings and restrictions defined below. Any FITS structure may further restrict
the use of these keywords.

4.4.2.1 General Descriptive Keywords

DATE Keyword The value field shall contain a character string giving the date on
which the HDU was created, in the form YYYY-MM-DD, or the date and time when the
HDU was created, in the form YYYY-MM-DDThh:mm:ss[.sss. . . ], where YYYY shall be the
four-digit calendar year number, MM the two-digit month number with January given by
01 and December by 12, and DD the two-digit day of the month. When both date and
time are given, the literal T shall separate the date and time, hh shall be the two-digit
hour in the day, mm the two-digit number of minutes after the hour, and ss[.sss. . . ]
the number of seconds (two digits followed by an optional fraction) after the minute.
Default values must not be given to any portion of the date/time string, and leading
zeros must not be omitted. The decimal part of the seconds field is optional and may
be arbitrarily long, so long as it is consistent with the rules for value formats of §4.2.

The value of the DATE keyword shall always be expressed in UTC when in this
format, for all data sets created on Earth.

The following format may appear on files written before January 1, 2000. The value
field contains a character string giving the date on which the HDU was created, in the
form DD/MM/YY, where DD is the day of the month, MM the month number with January
given by 01 and December by 12, and YY the last two digits of the year, the first two
digits being understood to be 19. Specification of the date using Universal Time is
recommended but not assumed.

When a newly created HDU is substantially a verbatim copy of a another HDU,
the value of the DATE keyword in the original HDU may be retained in the new HDU
instead of updating the value to the current date and time.

ORIGIN Keyword The value field shall contain a character string identifying the or-
ganization or institution responsible for creating the FITS file.

EXTEND Keyword The value field shall contain a logical constant with the value T.
This keyword may only appear in the primary header and must not appear in an exten-
sion header. This keyword is used to advise that there may be conforming extensions in
the FITS file following the primary HDU. This keyword is only advisory, so its presence
does not require that the FITS file contains extensions, nor does the absence of this
keyword necessarily imply that the file does not contain extensions. Previous versions

FITS Standard



4.4. KEYWORDS 33

of this standard stated that the EXTEND keyword must be present in the primary header
if the file contained extensions, but this is no longer required.

BLOCKED Keyword This keyword is deprecated and shall not be used in new FITS
files. It is reserved primarily to prevent its use with other meanings. As previously
defined, this keyword, if used, was required to appear only within the first 36 keywords
in the primary header. Its presence with the required logical value of T advised that the
physical block size of the FITS file on which it appears may be an integral multiple of
the FITS block length and not necessarily equal to it.

4.4.2.2 Keywords Describing Observations

DATE-OBS Keyword The format of the value field for DATE-OBS keywords shall follow
the prescriptions for the DATE keyword (§4.4.2.1). Either the 4-digit year format or the
2-digit year format may be used for observation dates from 1900 through 1999 although
the 4-digit format is recommended.

When the format with a four-digit year is used, the default interpretations for time
should be UTC for dates beginning 1972-01-01 and UT before. Other date and time
scales are permissible. The value of the DATE-OBS keyword shall be expressed in the
principal time system or time scale of the HDU to which it belongs; if there is any chance
of ambiguity, the choice should be clarified in comments. The value of DATE-OBS shall be
assumed to refer to the start of an observation, unless another interpretation is clearly
explained in the comment field. Explicit specification of the time scale is recommended.
By default, times for TAI and times that run simultaneously with TAI, e.,g., UTC and
TT, will be assumed to be as measured at the detector (or, in practical cases, at the
observatory). For coordinate times such as TCG, TCB and TDB, the default shall be to
include light-time corrections to the associated spatial origin, namely the geocenter for
TCG and the solar-system barycenter for the other two. Conventions may be developed
that use other time systems. Appendix B of this document contains the appendix to
the agreement on a four digit year, which discusses time systems in some detail.

When the value of DATE-OBS is expressed in the two-digit year form, allowed for files
written before January 1, 2000 with a year in the range 1900-1999, there is no default
assumption as to whether it refers to the start, middle or end of an observation.

DATExxxx Keywords The value fields for all keywords beginning with the string DATE

whose value contains date, and optionally time, information shall follow the prescriptions
for the DATE-OBS keyword.

TELESCOP Keyword The value field shall contain a character string identifying the
telescope used to acquire the data associated with the header.

FITS Standard



34 SECTION 4. HEADERS

INSTRUME Keyword The value field shall contain a character string identifying the
instrument used to acquire the data associated with the header.

OBSERVER Keyword The value field shall contain a character string identifying who
acquired the data associated with the header.

OBJECT Keyword The value field shall contain a character string giving a name for
the object observed.

EQUINOX Keyword The value field shall contain a floating-point number giving the
equinox in years for the celestial coordinate system in which positions are expressed. The
special case where EQUINOX is exactly 2000 is taken to be a reference to the International
Celestial Reference System (ICRS).

EPOCH Keyword This keyword is deprecated and shall not be used in new FITS files.
It is reserved primarily to prevent its use with other meanings. The EQUINOX keyword
shall be used instead. The value field of this keyword was previously defined to contain
a floating-point number giving the equinox in years for the celestial coordinate system
in which positions are expressed.

4.4.2.3 Bibliographic Keywords

AUTHOR Keyword The value field shall contain a character string identifying who
compiled the information in the data associated with the header. This keyword is
appropriate when the data originate in a published paper or are compiled from many
sources.

REFERENC Keyword The value field shall contain a character string citing a reference
where the data associated with the header are published. It is recommended that the
unique 19-digit bibliographic identifier code, as used in the Astrophysics Data System
bibliographic databases (http://adswww.harvard.edu/), be included in the value string
when available (e.g., ’1994A&AS..103..135A’).

4.4.2.4 Commentary Keywords

These keywords provide commentary information about the contents or history of the
FITS file and may occur any number of times in a header. These keywords shall have
no associated value even if the value indicator characters ‘= ’ appear in bytes 9 and 10
(hence it is recommended that these keywords not contain the value indicator). Bytes 9
through 80 may contain any of the restricted set of ASCII text characters, decimal 32
through 126 (hexadecimal 20 through 7E).

FITS Standard



4.4. KEYWORDS 35

COMMENT Keyword This keyword may be used to supply any comments regarding the
FITS file.

HISTORY Keyword This keyword should be used to describe the history of steps and
procedures associated with the processing of the associated data.

Keyword Field is blank This keyword may be used to supply any comments re-
garding the FITS file. It is frequently used for aesthetic purposes to provide a break
between groups of related keywords in the header.

4.4.2.5 Keywords that Describe Arrays

These keywords are used to describe the contents of an array, either in the primary
array, in an IMAGE extension (§7.1), or in a series of random groups (§6). They are
optional, but if they appear in the header describing an array or groups, they must
be used as defined in this section of this standard. They shall not be used in headers
describing other structures unless the meaning is the same as defined here.

BSCALE Keyword This keyword shall be used, along with the BZERO keyword, to
linearly scale the array pixel values (i.e., the actual values stored in the FITS file) to
transform them into the physical values that they represent using Eq. 4.3.

physical value = BZERO+ BSCALE× array value (4.3)

The value field shall contain a floating-point number representing the coefficient of the
linear term in the scaling equation, the ratio of physical value to array value at zero
offset. The default value for this keyword is 1.0. Before support for IEEE floating-point
data types was added to FITS [7], this technique of linearly scaling integer values was
the only way to represent the full range of floating-point values in a FITS array. This
linear scaling technique is still commonly used to reduce the size of the data array by a
factor of 2 by representing 32-bit floating-point physical values as 16-bit scaled integers.

BZERO Keyword This keyword shall be used, along with the BSCALE keyword, to
linearly scale the array pixel values (i.e., the actual values stored in the FITS file) to
transform them into the physical values that they represent using Eq. 4.3. The value
field shall contain a floating-point number representing the physical value corresponding
to an array value of zero. The default value for this keyword is 0.0.

Besides its use in representing floating point values as scaled integers (see the de-
scription of the BSCALE keyword), the BZERO keyword is also used when storing unsigned
integer values in the FITS array. In this special case the BSCALE keyword shall have the
default value of 1.0, and the BZERO keyword shall have one of the integer values shown
in Table 4.9.

FITS Standard



36 SECTION 4. HEADERS

Table 4.9. Usage of BZERO to represent non-default integer data types.

BITPIX Native Physical BZERO
Data Type Data Type

16 signed unsigned 16-bit 32768 (215)
32 signed unsigned 32-bit 2147483648 (231)
64 signed unsigned 64-bit 9223372036854775808 (263)
8 unsigned signed byte -128 (−27)

Since the FITS format does not support a native unsigned integer data type (except
for the unsigned 8-bit byte data type), the unsigned values are stored in the FITS array
as native signed integers with the appropriate integer offset specified by the BZERO

keyword value shown in the table. For the byte data type, the converse technique can
be used to store signed byte values as native unsigned values with the negative BZERO

offset. In each case, the physical value is computed by adding the offset specified by the
BZERO keyword to the native data type value that is stored in the FITS file.3

BUNIT Keyword The value field shall contain a character string describing the phys-
ical units in which the quantities in the array, after application of BSCALE and BZERO,
are expressed. These units must follow the prescriptions of §4.3.

BLANK Keyword This keyword shall be used only in headers with positive values
of BITPIX (i.e., in arrays with integer data). Bytes 1 through 8 contain the string
‘BLANK   ’ (ASCII spaces in bytes 6 through 8). The value field shall contain an
integer that specifies the value that is used within the integer array to represent pixels
that have an undefined physical value.

If the BSCALE and BZERO keywords do not have the default values of 1.0 and 0.0,
respectively, then the value of the BLANK keyword must equal the actual value in the
FITS data array that is used to represent an undefined pixel and not the corresponding
physical value (computed from Eq. 4.3) . To cite a specific, common example, unsigned
16-bit integers are represented in a signed integer FITS array (with BITPIX = 16) by
setting BZERO = 32768 and BSCALE = 1. If it is desired to use pixels that have an

3A more computationally efficient method of adding or subtracting the BZERO values is to simply
flip the most significant bit of the binary value. To give a simple example using 8-bit integers, the
decimal value 248, minus the BZERO value of 128 equals 120. The binary representation of 248 is
11111000. Flipping the most significant bit gives the binary value 01111000, which is equal to decimal
120.

FITS Standard



4.4. KEYWORDS 37

unsigned value (i.e., the physical value) equal to 0 to represent undefined pixels in the
array, then the BLANK keyword must be set to the value −32768 because that is the
actual value of the undefined pixels in the FITS array.

DATAMAX Keyword The value field shall always contain a floating-point number, re-
gardless of the value of BITPIX. This number shall give the maximum valid physical
value represented by the array (from Eq. 4.3), exclusive of any IEEE special values.

DATAMIN Keyword The value field shall always contain a floating-point number, re-
gardless of the value of BITPIX. This number shall give the minimum valid physical
value represented by the array (from Eq. 4.3), exclusive of any IEEE special values.

4.4.2.6 Extension Keywords

Although these keywords were originally defined for use within the header of a conform-
ing extension, they also may appear in the primary header with an analogous meaning.
If these keywords are present, it is recommended that they have a unique combination
of values in each HDU of the FITS file.

EXTNAME Keyword The value field shall contain a character string to be used to
distinguish among different extensions of the same type, i.e., with the same value of
XTENSION, in a FITS file. Within this context, the primary array should be considered
as equivalent to an IMAGE extension.

EXTVER Keyword The value field shall contain an integer to be used to distinguish
among different extensions in a FITS file with the same type and name, i.e., the same
values for XTENSION and EXTNAME. The values need not start with 1 for the first extension
with a particular value of EXTNAME and need not be in sequence for subsequent values.
If the EXTVER keyword is absent, the file should be treated as if the value were 1.

EXTLEVEL Keyword The value field shall contain an integer specifying the level in a
hierarchy of extension levels of the extension header containing it. The value shall be 1
for the highest level; levels with a higher value of this keyword shall be subordinate to
levels with a lower value. If the EXTLEVEL keyword is absent, the file should be treated
as if the value were 1.

4.4.3 Additional Keywords

New keywords may be devised in addition to those described in this standard, so long
as they are consistent with the generalized rules for keywords and do not conflict with
mandatory or reserved keywords.

FITS Standard



38 SECTION 4. HEADERS

FITS Standard



39

Section 5

Data Representation

Primary and extension data shall be represented in one of the formats described in this
section. FITS data shall be interpreted to be a byte stream. Bytes are in big endian
order of decreasing significance. The byte that includes the sign bit shall be first, and
the byte that has the ones bit shall be last.

5.1 Characters

Each character shall be represented by one byte. A character shall be represented by its
7-bit ASCII [20] code in the low order seven bits in the byte. The high-order bit shall
be zero.

5.2 Integers

5.2.1 Eight-bit

Eight-bit integers shall be unsigned binary integers, contained in one byte with decimal
values ranging from 0 to 255.

5.2.2 Sixteen-bit

Sixteen-bit integers shall be two’s complement signed binary integers, contained in two
bytes with decimal values ranging from -32768 to +32767.

5.2.3 Thirty-two-bit

Thirty-two-bit integers shall be two’s complement signed binary integers, contained in
four bytes with decimal values ranging from -2147483648 to +2147483647.

FITS Standard



40 SECTION 5. DATA REPRESENTATION

5.2.4 Sixty-four-bit

Sixty-four-bit integers shall be two’s complement signed binary integers, contained
in eight bytes with decimal values ranging from -9223372036854775808 to
+9223372036854775807.

5.2.5 Unsigned Integers

The FITS format does not support a native unsigned integer data type (except for the
unsigned 8-bit byte data type) therefore unsigned 16-bit, 32-bit, or 64-bit binary integers
cannot be stored directly in a FITS data array. Instead, the appropriate offset must be
applied to the unsigned integer to shift the value into the range of the corresponding
signed integer, which is then stored in the FITS file. The BZERO keyword shall record
the amount of the offset needed to restore the original unsigned value. The BSCALE

keyword shall have the default value of 1.0 in this case, and the appropriate BZERO

value, as a function of BITPIX, is specified in Table 4.9.
This same technique must be used when storing unsigned integers in a binary table

column of signed integers (§7.3.2). In this case the TSCALn keyword (analogous to
BSCALE) shall have the default value of 1.0, and the appropriate TZEROn value (analogous
to BZERO) is specified in Table 7.7.

5.3 IEEE-754 Floating-Point

Transmission of 32- and 64-bit floating-point data within the FITS format shall use
the ANSI/IEEE-754 standard [21]. BITPIX = -32 and BITPIX = -64 signify 32- and
64-bit IEEE floating-point numbers, respectively; the absolute value of BITPIX is used
for computing the sizes of data structures. The full IEEE set of number forms is allowed
for FITS interchange, including all special values.

The BLANK keyword should not be used when BITPIX = -32 or -64; rather, the
IEEE NaN should be used to represent an undefined value. Use of the BSCALE and
BZERO keywords is not recommended.

Appendix E has additional details on the IEEE format.

FITS Standard



41

Section 6

Random Groups Structure

Although it is standard FITS, the random groups structure has been used almost exclu-
sively for applications in radio interferometry; outside this field, few FITS readers can
read data in random groups format. The binary table extension (§7.3) can accommodate
the structure described by random groups. While existing FITS files use the format,
and it is therefore included in this standard, its use for future applications has been
deprecated since the issue of Version 1 of this standard. Use of the word ‘deprecated’
is understood to mean that binary table extensions should be used in new astronomi-
cal application areas instead of the random groups format where either is appropriate
and where there is no historical precedent for random groups. Existing applications of
the random groups structure (almost exclusively interferometry) may continue to use
random groups as needed indefinitely.

6.1 Keywords

6.1.1 Mandatory Keywords

The SIMPLE keyword is required to be the first keyword in the primary header of all
FITS files, including those with random groups records. If the random groups format
records follow the primary header, the keyword records of the primary header must
use the keywords defined in Table 6.1 in the order specified. No other keywords may
intervene between the SIMPLE keyword and the last NAXISn keyword.

SIMPLE Keyword The keyword record containing this keyword is structured in the
same way as if a primary data array were present (§4.4.1).

BITPIX Keyword The keyword record containing this keyword is structured as pre-
scribed in §4.4.1.

FITS Standard



42 SECTION 6. RANDOM GROUPS STRUCTURE

Table 6.1. Mandatory keywords in primary header preceding random groups.

# Keyword

1 SIMPLE = T

2 BITPIX

3 NAXIS

4 NAXIS1 = 0

5 NAXISn, n=2, . . . , value of NAXIS
...
(other keywords, which must include . . . )
GROUPS = T

PCOUNT

GCOUNT
...

last END

NAXIS Keyword The value field shall contain an integer ranging from 1 to 999, rep-
resenting one more than the number of axes in each data array.

NAXIS1 Keyword The value field shall contain the integer 0, a signature of random
groups format indicating that there is no primary data array.

NAXISn Keywords (n=2, . . . , value of NAXIS) The value field shall contain an
integer, representing the number of positions along axis n-1 of the data array in each
group.

GROUPS Keyword The value field shall contain the logical constant T. The value T

associated with this keyword implies that random groups records are present.

PCOUNT Keyword The value field shall contain an integer equal to the number of
parameters preceding each array in a group.

GCOUNT Keyword The value field shall contain an integer equal to the number of
random groups present.

FITS Standard



6.1. KEYWORDS 43

END Keyword This keyword has no associated value. Bytes 9 through 80 shall contain
ASCII spaces (decimal 32 or hexadecimal 20).

The total number of bits in the random groups records exclusive of the fill described
in §6.2 is given by the following expression:

Nbits = |BITPIX| × GCOUNT×

(PCOUNT+ NAXIS2× NAXIS3× · · · × NAXISm), (6.1)

where Nbits is non-negative and the number of bits excluding fill, m is the value of NAXIS,
and BITPIX, GCOUNT, PCOUNT, and the NAXISn represent the values associated with those
keywords.

6.1.2 Reserved Keywords

PTYPEn Keywords The value field shall contain a character string giving the name
of parameter n. If the PTYPEn keywords for more than one value of n have the same
associated name in the value field, then the data value for the parameter of that name
is to be obtained by adding the derived data values of the corresponding parameters.
This rule provides a mechanism by which a random parameter may have more precision
than the accompanying data array elements; for example, by summing two 16-bit values
with the first scaled relative to the other such that the sum forms a number of up to
32-bit precision.

PSCALn Keywords This keyword shall be used, along with the PZEROn keyword, when
the nth FITS group parameter value is not the true physical value, to transform the
group parameter value to the true physical values it represents, using Eq. 6.2. The value
field shall contain a floating-point number representing the coefficient of the linear term
in Eq. 6.2, the scaling factor between true values and group parameter values at zero
offset. The default value for this keyword is 1.0.

PZEROn Keywords This keyword shall be used, along with the PSCALn keyword, when
the nth FITS group parameter value is not the true physical value, to transform the
group parameter value to the physical value. The value field shall contain a floating-
point number, representing the true value corresponding to a group parameter value
of zero. The default value for this keyword is 0.0. The transformation equation is as
follows:

physical value = PZEROn+ PSCALn× group parameter value (6.2)

FITS Standard



44 SECTION 6. RANDOM GROUPS STRUCTURE

6.2 Data Sequence

Random groups data shall consist of a set of groups. The number of groups shall be
specified by the GCOUNT keyword in the associated header. Each group shall consist of
the number of parameters specified by the PCOUNT keyword followed by an array with
the number of elements Nelem given by the following expression:

Nelem = (NAXIS2× NAXIS3× · · · × NAXISm), (6.3)

where Nelem is the number of elements in the data array in a group, m is the value of
NAXIS, and the NAXISn represent the values associated with those keywords.

The first parameter of the first group shall appear in the first location of the first
data block. The first element of each array shall immediately follow the last parameter
associated with that group. The first parameter of any subsequent group shall imme-
diately follow the last element of the array of the previous group. The arrays shall be
organized internally in the same way as an ordinary primary data array. If the groups
data do not fill the final data block, the remainder of the block shall be filled with zero
values in the same way as a primary data array (§3.3.2). If random groups records are
present, there shall be no primary data array.

6.3 Data Representation

Permissible data representations are those listed in §5. Parameters and elements of
associated data arrays shall have the same representation. If more precision is required
for an associated parameter than for an element of a data array, the parameter shall
be divided into two or more addends, represented by the same value for the PTYPEn

keyword. The value shall be the sum of the physical values, which may have been
obtained from the group parameter values using the PSCALn and PZEROn keywords.

FITS Standard



45

Section 7

Standard Extensions

A standard extension is a conforming extension whose organization and content are
completely specified in this standard. The specifications for the 3 currently defined
standard extensions, namely,

1. ’IMAGE’ extensions,

2. ’TABLE’ ASCII table extensions, and

3. ’BINTABLE’ binary table extensions

are given in the following sections. A list of other conforming extensions is given in
Appendix F

7.1 Image Extension

The FITS image extension is nearly identical in structure to the the primary HDU and
is used to store an array of data. Multiple image extensions can be used to store any
number of arrays in a single FITS file. The first keyword in an image extension shall
be XTENSION= ’IMAGE   ’.

7.1.1 Mandatory Keywords

The XTENSION keyword is required to be the first keyword of all image extensions. The
keyword records in the header of an image extension must use the keywords defined in
Table 7.1 in the order specified. No other keywords may intervene between the XTENSION
and GCOUNT keywords.

XTENSION Keyword The value field shall contain the character string ’IMAGE   ’.

FITS Standard



46 SECTION 7. STANDARD EXTENSIONS

Table 7.1. Mandatory keywords in image extensions.

# Keyword

1 XTENSION= ’IMAGE   ’

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
5 PCOUNT = 0

6 GCOUNT = 1
...
(other keywords . . . )
...

last END

BITPIX Keyword The value field shall contain an integer. The absolute value is
used in computing the sizes of data structures. It shall specify the number of bits that
represent a data value. The only valid values of BITPIX are given in Table 4.6. Writers
of IMAGE extensions should select a BITPIX data type appropriate to the form, range of
values, and accuracy of the data in the array.

NAXIS Keyword The value field shall contain a non-negative integer no greater than
999, representing the number of axes in the associated data array. If the value is zero
then the image extension shall not have any data blocks following the header.

NAXISn Keywords The value field of this indexed keyword shall contain a non-
negative integer, representing the number of elements along axis n of a data array.
The NAXISn keywords must be present for all values n = 1, ..., NAXIS, and for no
other values of n. If the value of any of the NAXISn keywords is zero, then the image
extension shall not have any data blocks following the header. If NAXIS is equal to 0,
there should not be any NAXISn keywords.

PCOUNT Keyword The value field shall contain the integer 0.

GCOUNT Keyword The value field shall contain the integer 1; each image extension
contains a single array.

FITS Standard



7.1. IMAGE EXTENSION 47

END Keyword This keyword has no associated value. Bytes 9 through 80 shall be
filled with ASCII spaces.

7.1.2 Other Reserved Keywords

The reserved keywords defined in §4.4.2 (except for EXTEND and BLOCKED) may appear
in an image extension header. The keywords must be used as defined in that section.

7.1.3 Data Sequence

The data format shall be identical to that of a primary data array as described in §3.3.2.

FITS Standard



48 SECTION 7. STANDARD EXTENSIONS

Table 7.2. Mandatory keywords in ASCII table extensions.

# Keyword

1 XTENSION= ’TABLE   ’

2 BITPIX = 8

3 NAXIS = 2

4 NAXIS1

5 NAXIS2

6 PCOUNT = 0

7 GCOUNT = 1

8 TFIELDS
...
(other keywords, including (if TFIELDS is not zero) . . . )
TTYPEn, n=1, 2, . . . , k where k is the value of TFIELDS (Recommended)
TBCOLn, n=1, 2, . . . , k where k is the value of TFIELDS (Required)
TFORMn, n=1, 2, . . . , k where k is the value of TFIELDS (Required)
...

last END

7.2 The ASCII Table Extension

The ASCII table extension provides a means of storing catalogs and tables of astronom-
ical data in FITS format. Each row of the table consists of a fixed-length sequence of
ASCII characters divided into fields that correspond to the columns in the table. The
first keyword in an ASCII table extension shall be XTENSION= ’TABLE   ’.

7.2.1 Mandatory Keywords

The header of an ASCII table extension must use the keywords defined in Table 7.2.
The first keyword must be XTENSION; the seven keywords following XTENSION (BITPIX
. . . TFIELDS) must be in the order specified with no intervening keywords.

XTENSION Keyword The value field shall contain the character string value text
’TABLE   ’.

BITPIX Keyword The value field shall contain the integer 8, denoting that the array
contains ASCII characters.

FITS Standard



7.2. THE ASCII TABLE EXTENSION 49

NAXIS Keyword The value field shall contain the integer 2, denoting that the included
data array is two-dimensional: rows and columns.

NAXIS1 Keyword The value field shall contain a non-negative integer, giving the
number of ASCII characters in each row of the table. This includes all the characters
in the defined fields plus any characters that are not included in any field.

NAXIS2 Keyword The value field shall contain a non-negative integer, giving the
number of rows in the table.

PCOUNT Keyword The value field shall contain the integer 0.

GCOUNT Keyword The value field shall contain the integer 1; the data blocks contain
a single table.

TFIELDS Keyword The value field shall contain a non-negative integer representing
the number of fields in each row. The maximum permissible value is 999.

TBCOLn Keywords The value field of this indexed keyword shall contain an integer
specifying the column in which field n starts. The first column of a row is numbered 1.

TFORMn Keywords The value field of this indexed keyword shall contain a character
string describing the format in which field n is encoded. Only the formats in Table 7.3,
interpreted as Fortran [17] input formats and discussed in more detail in §7.2.5, are
permitted for encoding. Format codes must be specified in upper case. Other format
editing codes common to Fortran such as repetition, positional editing, scaling, and field
termination are not permitted. All values in numeric fields have a number base of ten
(i.e., they are decimal); binary, octal, hexadecimal, and other representations are not
permitted. The TDISPn keyword, defined in §7.2.2, may be used to recommend that a
decimal integer value in an ASCII table be displayed as the equivalent binary, octal, or
hexadecimal value.

END Keyword This keyword has no associated value. Bytes 9 through 80 shall contain
ASCII spaces (decimal 32 or hexadecimal 20).

7.2.2 Other Reserved Keywords

In addition to the reserved keywords defined in §4.4.2 (except for EXTEND and BLOCKED),
the following other reserved keywords may be used to describe the structure of an ASCII
table data array. They are optional, but if they appear within an ASCII table extension
header, they must be used as defined in this section of this standard.

FITS Standard



50 SECTION 7. STANDARD EXTENSIONS

Table 7.3. Valid TFORMn format values in TABLE extensions.

Field Value Data Type

Aw Character
Iw Decimal integer

Fw.d Floating-point, fixed decimal notation
Ew.d Floating-point, exponential notation
Dw.d Floating-point, exponential notation

Note. — w is the width in characters of the field and
d is the number of digits to the right of the decimal.

TTYPEn Keywords The value field for this indexed keyword shall contain a character
string giving the name of field n. It is strongly recommended that every field of the table
be assigned a unique, case-insensitive name with this keyword, and it is recommended
that the character string be composed only of upper and lower case letters, digits,
the underscore (‘ ’, decimal 95, hexadecimal 5F) and hyphen (‘-’, decimal 45 or
hexadecimal 2D). String comparisons with the TTYPEn keyword values should not be
case sensitive (e.g., ’TIME’ and ’Time’ should be interpreted as the same name).

TUNITn Keywords The value field shall contain a character string describing the
physical units in which the quantity in field n, after any application of TSCALn and
TZEROn, is expressed. Units must follow the prescriptions in §4.3.

TSCALn Keywords This indexed keyword shall be used, along with the TZEROn key-
word, to linearly scale the values in the table field n to transform them into the physical
values that they represent using Eq. 7.1. The value field shall contain a floating-point
number representing the coefficient of the linear term in the scaling equation. The
default value for this keyword is 1.0. This keyword must not be used for A-format
fields.

The transformation equation used to compute a true physical value from the quantity
in field n is

physical value = TZEROn+ TSCALn× field value. (7.1)

where field value is the value that is actually stored in that table field in the FITS
file

FITS Standard



7.2. THE ASCII TABLE EXTENSION 51

TZEROn Keywords This indexed keyword shall be used, along with the TSCALn key-
word, to linearly scale the values in the table field n to transform them into the physical
values that they represent using Eq. 7.1. The value field shall contain a floating-point
number representing the physical value corresponding to an array value of zero. The
default value for this keyword is 0.0. This keyword must not be used for A-format fields.

TNULLn Keywords The value field for this indexed keyword shall contain the character
string that represents an undefined value for field n. The string is implicitly space filled
to the width of the field.

TDISPn Keywords The value field of this indexed keyword shall contain a character
string describing the format recommended for displaying an ASCII text representation
of of the contents of field n. This keyword overrides the default display format given
by the TFORMn keyword. If the table value has been scaled, the physical value, derived
using Eq. 7.1, shall be displayed. All elements in a field shall be displayed with a single,
repeated format. Only the format codes in Table 7.4, discussed in §7.3.4, are permitted
for encoding. The format codes must be specified in upper case. If the Bw.m, Ow.m, and
Zw.m formats are not readily available to the reader, the Iw.m display format may be
used instead, and if the ENw.d and ESw.d formats are not available, Ew.d may be used.

7.2.3 Data Sequence

The table is constructed from a two-dimensional array of ASCII characters. The row
length and the number of rows shall be those specified, respectively, by the NAXIS1 and
NAXIS2 keywords of the associated header. The number of characters in a row and the
number of rows in the table shall determine the size of the character array. Every row
in the array shall have the same number of characters. The first character of the first
row shall be at the start of the data block immediately following the last header block.
The first character of subsequent rows shall follow immediately the character at the end
of the previous row, independent of the FITS block structure. The positions in the last
data block after the last character of the last row of the table shall be filled with ASCII
spaces.

7.2.4 Fields

Each row in the array shall consist of a sequence of from 0 to 999 fields, as specified
by the TFIELDS keyword, with one entry in each field. For every field, the Fortran [17]
format of the information contained (given by the TFORMn keyword), the location in the
row of the beginning of the field (given by the TBCOLn keyword), and (optionally, but
strongly recommended) the field name (given by the TTYPEn keyword), shall be specified
in the associated header. The location and format of fields shall be the same for every

FITS Standard



52 SECTION 7. STANDARD EXTENSIONS

Table 7.4. Valid TDISPn format values in TABLE extensions

Field Value Data Type

Aw Character
Iw.m Integer
Bw.m Binary, integers only
Ow.m Octal, integers only
Zw.m Hexadecimal, integers only
Fw.d Floating-point, fixed decimal notation

Ew.dEe Floating-point, exponential notation
ENw.d Engineering; E format with exponent multiple of 3
ESw.d Scientific; same as EN but nonzero leading digit if not zero

Gw.dEe General; appears as F if significance not lost, else E.
Dw.dEe Floating-point, exponential notation

Note. — w is the width in characters of displayed values, m is the minimum
number of digits displayed, d is the number of digits to right of decimal, and
e is number of digits in exponent. The .m and Ee fields are optional.

FITS Standard



7.2. THE ASCII TABLE EXTENSION 53

row. Fields may overlap, but this usage is not recommended. Only a limited set of
ASCII character values may appear within any field, depending on the field type as
specified below. There may be characters in a table row that are not included in any
field, (e.g., between fields, or before the first field or after the last field). Any 7-bit
ASCII character may occur in characters of a table row that are not included in a
defined field. A common convention is to include a space character between each field
for added legibility if the table row is displayed verbatim. It is also permissible to add
control characters, such as a carriage return or line feed character, following the last
field in each row as a way of formating the table if it is printed or displayed by a text
editing program.

7.2.5 Entries

All data in an ASCII table extension field shall be ASCII text in a format that conforms
to the rules for fixed field input in Fortran [17] format, as described below. The only
possible formats shall be those specified in Table 7.3. If values of −0 and +0 need to
be distinguished, then the sign character should appear in a separate field in character
format. TNULLn keywords may be used to specify a character string that represents
an undefined value in each field. The characters representing an undefined value may
differ from field to field but must be the same within a field. Writers of ASCII tables
should select a format for each field that is appropriate to the form, range of values, and
accuracy of the data in that field. This standard does not impose an upper limit on the
number of digits of precision, nor any limit on the range of numeric values. Software
packages that read or write data according to this standard could be limited, however,
in the range of values and exponents that are supported (e.g., to the range that can be
represented by 32-bit or 64-bit binary numbers).

The value of each entry shall be interpreted as described in the following paragraphs.

Character fields The value of a character-formatted (Aw) field is a character string
of width w containing the characters in columns TBCOLn through TBCOLn+w− 1. The
character string shall be composed of the restricted set of ASCII text characters with
decimal values in the range 32 through 126 (hexadecimal 20 through 7E).

Integer fields The value of an integer-formatted (Iw) field is a signed decimal integer
contained in columns TBCOLn through TBCOLn+w− 1 consisting of a single optional sign
(‘+’ or ‘-’) followed by one or more decimal digits (‘0’ through ‘9’). Non-significant
space characters may precede and/or follow the integer value within the field. A blank
field has value 0. All characters other than leading and trailing spaces, a contiguous
string of decimal digits, and a single leading sign character are forbidden.

FITS Standard



54 SECTION 7. STANDARD EXTENSIONS

Real fields The value of a real-formatted field (Fw.d, Ew.d, Dw.d) is a real number
determined from the w characters from columns TBCOLn through TBCOLn+w − 1. The
value is formed by

1. discarding any trailing space characters in the field and right-justifying the re-
maining characters,

2. interpreting the first non-space characters as a numeric string consisting of a
single optional sign (‘+’ or ‘-’) followed by one or more decimal digits (‘0’
through ‘9’) optionally containing a single decimal point (‘.’). The numeric
string is terminated by the end of the right-justified field or by the occurrence
of any character other than a decimal point (‘.’) and the decimal integers (‘0’
through ‘9’). If the string contains no explicit decimal point, then the implicit
decimal point is taken as immediately preceding the rightmost d digits of the
string, with leading zeros assumed if necessary. The use of implicit decimal points
is deprecated; real-formatted fields should always contain an explicit decimal point
to avoid possible misinterpretation.

3. If the numeric string is terminated by a

(a) ‘+’ or ‘-’, interpreting the following string as an exponent in the form of a
signed decimal integer, or

(b) ‘E’, or ‘D’, interpreting the following string as an exponent of the form E or
D followed by an optionally signed decimal integer constant.

4. The exponent string, if present, is terminated by the end of the right-justified
string.

5. Characters other than those specified above, including embedded space characters,
are forbidden.

The numeric value of the table field is then the value of the numeric string multi-
plied by ten (10) to the power of the exponent string, i.e., value = numeric string ×
10(exponent string). The default exponent is zero and a blank field has value zero. There
is no difference between the F, D, and E formats; the content of the string determines its
interpretation. Numbers requiring more precision and/or range than the local computer
can support may be represented. It is good form to specify a D format in TFORMn for
a column of an ASCII table when that column will contain numbers that cannot be
accurately represented in 32-bit IEEE binary format (see Appendix E).

FITS Standard



7.3. BINARY TABLE EXTENSION 55

Table 7.5. Mandatory keywords in binary table extensions.

# Keyword

1 XTENSION= ’BINTABLE’

2 BITPIX = 8

3 NAXIS = 2

4 NAXIS1

5 NAXIS2

6 PCOUNT

7 GCOUNT = 1

8 TFIELDS
...
(other keywords, including (if TFIELDS is not zero) . . . )
TTYPEn, n=1, 2, . . . , k where k is the value of TFIELDS (Recommended)
TFORMn, n=1, 2, . . . , k where k is the value of TFIELDS (Required)
...

last END

7.3 Binary Table Extension

The binary table extension is similar to the ASCII table in that it provides a means
of storing catalogs and tables of astronomical data in FITS format, however, it offers
more features and provides more efficient data storage than ASCII tables. The numerical
values in binary tables are stored in more compact binary formats rather than coded
into ASCII, and each field of a binary table can contain an array of values rather than
a simple scalar as in ASCII tables. The first keyword in a binary table extension shall
be XTENSION= ’BINTABLE’.

7.3.1 Mandatory Keywords

The XTENSION keyword is the first keyword of all binary table extensions. The seven
keywords following (BITPIX . . . TFIELDS) must be in the order specified in Table 7.5,
with no intervening keywords.

XTENSION Keyword The value field shall contain the character string ’BINTABLE’.

FITS Standard



56 SECTION 7. STANDARD EXTENSIONS

BITPIX Keyword The value field shall contain the integer 8, denoting that the array
is an array of 8-bit bytes.

NAXIS Keyword The value field shall contain the integer 2, denoting that the included
data array is two-dimensional: rows and columns.

NAXIS1 Keyword The value field shall contain a non-negative integer, giving the
number of 8-bit bytes in each row of the table.

NAXIS2 Keyword The value field shall contain a non-negative integer, giving the
number of rows in the table.

PCOUNT Keyword The value field shall contain the number of bytes that follow the
table in the supplemental data area called the heap.

GCOUNT Keyword The value field shall contain the integer 1; the data blocks contain
a single table.

TFIELDS Keyword The value field shall contain a non-negative integer representing
the number of fields in each row. The maximum permissible value is 999.

TFORMn Keywords The value field of this indexed keyword shall contain a character
string of the form rTa. The repeat count r is the ASCII representation of a non-negative
integer specifying the number of elements in field n. The default value of r is 1; the
repeat count need not be present if it has the default value. A zero element count,
indicating an empty field, is permitted. The data type T specifies the data type of the
contents of field n. Only the data types in Table 7.6 are permitted. The format codes
must be specified in upper case. For fields of type P or Q, the only permitted repeat
counts are 0 and 1. The additional characters a are optional and are not further defined
in this standard. Table 7.6 lists the number of bytes each data type occupies in a table
row. The first field of a row is numbered 1. The total number of bytes nrow in a table
row is given by

nrow =
TFIELDS

∑

i=1

ribi (7.2)

where ri is the repeat count for field i, bi is the number of bytes for the data type in
field i, and TFIELDS is the value of that keyword, must equal the value of NAXIS1.

FITS Standard



7.3. BINARY TABLE EXTENSION 57

Table 7.6. Valid TFORMn data types in BINTABLE extensions.

TFORMn value Description 8-bit Bytes

L Logical 1
X Bit †

B Unsigned byte 1
I 16-bit integer 2
J 32-bit integer 4
K 64-bit integer 8
A Character 1
E Single precision floating-point 4
D Double precision floating-point 8
C Single precision complex 8
M Double precision complex 16
P Array Descriptor (32-bit) 8
Q Array Descriptor (64-bit) 16

†number of 8-bit bytes needed to contain all bits.

FITS Standard



58 SECTION 7. STANDARD EXTENSIONS

END Keyword This keyword has no associated value. Bytes 9 through 80 shall contain
ASCII spaces.

7.3.2 Other Reserved Keywords

In addition to the reserved keywords defined in §4.4.2 (except for EXTEND and BLOCKED),
the following other reserved keywords may be used to describe the structure of a binary
table data array. They are optional, but if they appear within a binary table extension
header, they must be used as defined in this section of this standard.

TTYPEn Keywords The value field for this indexed keyword shall contain a character
string giving the name of field n. It is strongly recommended that every field of the table
be assigned a unique, case-insensitive name with this keyword, and it is recommended
that the character string be composed only of upper and lower case letters, digits,
the underscore (‘ ’, decimal 95, hexadecimal 5F) and hyphen (‘-’, decimal 45 or
hexadecimal 2D). String comparisons with the TTYPEn keyword values should not be
case sensitive (e.g., ’TIME’ and ’Time’ should be interpreted as the same name).

TUNITn Keywords The value field shall contain a character string describing the
physical units in which the quantity in field n, after any application of TSCALn and
TZEROn, is expressed. Units must follow the prescriptions in §4.3.

TSCALn Keywords This indexed keyword shall be used, along with the TZEROn key-
word, to linearly scale the values in the table field n to transform them into the physical
values that they represent using Eq. 7.1. It must not be used if the format of field n is
A, L, or X. For fields with all other data types, the value field shall contain a floating-
point number representing the coefficient of the linear term in Eq. 7.1, which is used to
compute the true physical value of the field, or, in the case of the complex data types C
and M, of the real part of the field, with the imaginary part of the scaling factor set to
zero. The default value for this keyword is 1.0. For fields of type P or Q, the values of
TSCALn and TZEROn are to be applied to the values in the data array in the heap area,
not the values of the array descriptor (see §7.3.5).

TZEROn Keywords This indexed keyword shall be used, along with the TSCALn key-
word, to linearly scale the values in the table field n to transform them into the physical
values that they represent using Eq. 7.1. It must not be used if the format of field n is A,
L, or X. For fields with all other data types, the value field shall contain a floating-point
number representing the true physical value corresponding to a value of zero in field n

of the FITS file, or, in the case of the complex data types C and M, in the real part of
the field, with the imaginary part set to zero. The default value for this keyword is 0.0.
Equation 7.1 is used to compute a true physical value from the quantity in field n. For

FITS Standard



7.3. BINARY TABLE EXTENSION 59

Table 7.7. Usage of TZEROn to represent non-default integer data types.

TFORMn Native Physical TZEROn
Data Type Data Type

’I’ signed unsigned 16-bit 32768 (215)
’J’ signed unsigned 32-bit 2147483648 (231)
’K’ signed unsigned 64-bit 9223372036854775808 (263)
’B’ unsigned signed byte -128 (−27)

fields of type P or Q, the values of TSCALn and TZEROn are to be applied to the values in
the data array in the heap area, not the values of the array descriptor (see §7.3.5).

In addition to its use in representing floating point values as scaled integers, the
TZEROn keyword is also used when storing unsigned integer values in the field. In this
special case the TSCALn keyword shall have the default value of 1.0 and the TZEROn

keyword shall have one of the integer values shown in Table 7.7

Since the binary table format does not support a native unsigned integer data type
(except for the unsigned 8-bit ’B’ column type), the unsigned values are stored in the
field as native signed integers with the appropriate integer offset specified by the TZEROn
keyword value shown in the table. For the byte column type, the converse technique can
be used to store signed byte values as native unsigned values with the negative TZEROn

offset. In each case, the physical value is computed by adding the offset specified by the
TZEROn keyword to the native data type value that is stored in the table field.

TNULLn Keywords The value field for this indexed keyword shall contain the integer
that represents an undefined value for field n of data type B, I, J or K, or P or Q array
descriptor fields (§7.3.5) that point to B, I, J or K integer arrays. The keyword must
not be used if field n is of any other data type. The value of this keyword corresponds
to the table column values before applying any transformation indicated by the TSCALn

and TZEROn keywords.

If the TSCALn and TZEROn keywords do not have the default values of 1.0 and 0.0,
respectively, then the value of the TNULLn keyword must equal the actual value in the
FITS file that is used to represent an undefined element and not the corresponding
physical value (computed from Eq. 7.1). To cite a specific, common example, unsigned
16-bit integers are represented in a signed integer column (with TFORMn = ’I’) by
setting TZEROn = 32768 and TSCALn = 1. If it is desired to use elements that have an
unsigned value (i.e., the physical value) equal to 0 to represent undefined elements in
the field, then the TNULLn keyword must be set to the value -32768 because that is the

FITS Standard



60 SECTION 7. STANDARD EXTENSIONS

Table 7.8. Valid TDISPn format values in BINTABLE extensions

Field Value Data Type

Aw Character
Lw Logical

Iw.m Integer
Bw.m Binary, integers only
Ow.m Octal, integers only
Zw.m Hexadecimal, integers only
Fw.d Floating-point, fixed decimal notation

Ew.dEe Floating-point, exponential notation
ENw.d Engineering; E format with exponent multiple of 3
ESw.d Scientific; same as EN but nonzero leading digit if not zero

Gw.dEe General; appears as F if significance not lost, else E.
Dw.dEe Floating-point, exponential notation

Note. — w is the width in characters of displayed values, m is the minimum
number of digits displayed, d is the number of digits to right of decimal, and
e is number of digits in exponent. The .m and Ee fields are optional.

actual value stored in the FITS file for those elements in the field.

TDISPn Keywords The value field of this indexed keyword shall contain a character
string describing the format recommended for displaying an ASCII text representation
of the contents of field n. If the table value has been scaled, the physical value, derived
using Eq. 7.1, shall be displayed. All elements in a field shall be displayed with a single,
repeated format. For purposes of display, each byte of bit (type X) and byte (type B)
arrays is treated as an unsigned integer. Arrays of type A may be terminated with a
zero byte. Only the format codes in Table 7.8, discussed in §7.3.4, are permitted for
encoding. The format codes must be specified in upper case. If the Bw.m, Ow.m, and
Zw.m formats are not readily available to the reader, the Iw.m display format may be
used instead, and if the ENw.d and ESw.d formats are not available, Ew.d may be used.
In the case of fields of type P or Q, the TDISPn value applies to the data array pointed
to by the array descriptor (§7.3.5), not the values in the array descriptor itself.

FITS Standard



7.3. BINARY TABLE EXTENSION 61

THEAP Keyword The value field of this keyword shall contain an integer providing
the separation, in bytes, between the start of the main data table and the start of a
supplemental data area called the heap. The default value, which is also the minimum
allowed value, shall be the product of the values of NAXIS1 and NAXIS2. This keyword
shall not be used if the value of PCOUNT is zero. The use of this keyword is described in
in §7.3.5.

TDIMn Keywords The value field of this indexed keyword shall contain a character
string describing how to interpret the contents of field n as a multi-dimensional array
with a format of ’(l,m,n...)’ where l, m, n, . . . are the dimensions of the array. The
data are ordered such that the array index of the first dimension given (l) is the most
rapidly varying and that of the last dimension given is the least rapidly varying. The
total number of elements in the array equals the product of the dimensions specified
in the TDIMn keyword. The size must be less than or equal to the repeat count on the
TFORMn keyword, or, in the case of columns that have a ’P’ or ’Q’ TFORMn data type,
less than or equal to the array length specified in the variable-length array descriptor
(see §7.3.5). In the special case where the variable-length array descriptor has a size of
zero, then the TDIMn keyword is not applicable. If the number of elements in the array
implied by the TDIMn is less than the allocated size of the array in the FITS file, then
the unused trailing elements should be interpreted as containing undefined fill values.

A character string is represented in a binary table by a one-dimensional character
array, as described under ‘Character’ in the list of data types in §7.3.3.1. For example,
a Fortran CHARACTER*20 variable could be represented in a binary table as a character
array declared as TFORMn = ’20A’. Arrays of strings, i.e., multi-dimensional character
arrays, may be represented using the TDIMn notation. For example, if TFORMn = ’60A’

and TDIMn = ’(5,4,3)’, then the entry consists of a 4×3 array of strings of 5 characters
each.

7.3.3 Data Sequence

The data in a binary table extension shall consist of a main data table which may, but
need not, be followed by additional bytes in the supplemental data area. The positions
in the last data block after the last additional byte, or, if there are no additional bytes,
the last character of the last row of the main data table, shall be filled by setting all
bits to zero.

7.3.3.1 Main Data Table

The table is constructed from a two-dimensional byte array. The number of bytes in
a row shall be specified by the value of the NAXIS1 keyword and the number of rows
shall be specified by the NAXIS2 keyword of the associated header. Within a row, fields

FITS Standard



62 SECTION 7. STANDARD EXTENSIONS

shall be stored in order of increasing column number, as determined from the n of the
TFORMn keywords. The number of bytes in a row and the number of rows in the table
shall determine the size of the byte array. Every row in the array shall have the same
number of bytes. The first row shall begin at the start of the data block immediately
following the last header block. Subsequent rows shall begin immediately following the
end of the previous row, with no intervening bytes, independent of the FITS block
structure. Words need not be aligned along word boundaries.

Each row in the array shall consist of a sequence of from 0 to 999 fields as specified
by the TFIELDS keyword. The number of elements in each field and their data type
shall be specified by the TFORMn keyword in the associated header. A separate format
keyword must be provided for each field. The location and format of fields shall be the
same for every row. Fields may be empty, if the repeat count specified in the value of
the TFORMn keyword of the header is 0. Writers of binary tables should select a format
appropriate to the form, range of values, and accuracy of the data in the table. The
following data types, and no others, are permitted.

Logical If the value of the TFORMn keyword specifies data type L, the contents of
field n shall consist of ASCII T indicating true or ASCII F, indicating false. A 0 byte
(hexadecimal 00) indicates a null value.

Bit Array If the value of the TFORMn keyword specifies data type X, the contents of
field n shall consist of a sequence of bits starting with the most significant bit; the bits
following shall be in order of decreasing significance, ending with the least significant
bit. A bit array shall be composed of an integral number of bytes, with those bits
following the end of the data set to zero. No null value is defined for bit arrays.

Character If the value of the TFORMn keyword specifies data type A, field n shall
contain a character string of zero or more members, composed of the restricted set
of ASCII text characters. This character string may be terminated before the length
specified by the repeat count by an ASCII NULL (hexadecimal code 00). Characters
after the first ASCII NULL are not defined. A string with the number of characters
specified by the repeat count is not NULL terminated. Null strings are defined by the
presence of an ASCII NULL as the first character.

Unsigned 8-Bit Integer If the value of the TFORMn keyword specifies data type B,
the data in field n shall consist of unsigned 8-bit integers, with the most significant bit
first, and subsequent bits in order of decreasing significance. Null values are given by
the value of the associated TNULLn keyword. Signed integers can be represented using
the convention described in § 5.2.5.

FITS Standard



7.3. BINARY TABLE EXTENSION 63

16-Bit Integer If the value of the TFORMn keyword specifies data type I, the data in
field n shall consist of two’s complement signed 16-bit integers, contained in two bytes.
The most significant byte shall be first (big endian byte order). Within each byte the
most significant bit shall be first, and subsequent bits shall be in order of decreasing
significance. Null values are given by the value of the associated TNULLn keyword.
Unsigned integers can be represented using the convention described in § 5.2.5.

32-Bit Integer If the value of the TFORMn keyword specifies data type J, the data
in field n shall consist of two’s complement signed 32-bit integers, contained in four
bytes. The most significant byte shall be first, and subsequent bytes shall be in order of
decreasing significance (big endian byte order). Within each byte, the most significant
bit shall be first, and subsequent bits shall be in order of decreasing significance. Null
values are given by the value of the associated TNULLn keyword. Unsigned integers can
be represented using the convention described in § 5.2.5.

64-Bit Integer If the value of the TFORMn keyword specifies data type K, the data
in field n shall consist of two’s complement signed 64-bit integers, contained in eight
bytes. The most significant byte shall be first, and subsequent bytes shall be in order
of decreasing significance. Within each byte, the most significant bit shall be first, and
subsequent bits shall be in order of decreasing significance (big endian byte order). Null
values are given by the value of the associated TNULLn keyword. Unsigned integers can
be represented using the convention described in § 5.2.5.

Single Precision Floating-Point If the value of the TFORMn keyword specifies data
type E, the data in field n shall consist of ANSI/IEEE-754 [21] 32-bit floating-point
numbers, in big endian byte order, as described in Appendix E. All IEEE special values
are recognized. The IEEE NaN is used to represent null values.

Double Precision Floating-Point If the value of the TFORMn keyword specifies data
type D, the data in field n shall consist of ANSI/IEEE-754 [21] 64-bit double precision
floating-point numbers, in big endian byte order, as described in Appendix E. All IEEE
special values are recognized. The IEEE NaN is used to represent null values.

Single Precision Complex If the value of the TFORMn keyword specifies data type C,
the data in field n shall consist of a sequence of pairs of 32-bit single precision floating-
point numbers. The first member of each pair shall represent the real part of a complex
number, and the second member shall represent the imaginary part of that complex
number. If either member contains an IEEE NaN, the entire complex value is null.

FITS Standard



64 SECTION 7. STANDARD EXTENSIONS

Double Precision Complex If the value of the TFORMn keyword specifies data type
M, the data in field n shall consist of a sequence of pairs of 64-bit double precision
floating-point numbers. The first member of each pair shall represent the real part of a
complex number, and the second member of the pair shall represent the imaginary part
of that complex number. If either member contains an IEEE NaN, the entire complex
value is null.

Array Descriptor The repeat count on the P and Q array descriptor fields must
either have a value of 0 (denoting an empty field of zero bytes) or 1. If the value of
the TFORMn keyword specifies data type 1P, the data in field n shall consist of one pair
of 32-bit integers. If the value of the TFORMn keyword specifies data type 1Q, the data
in field n shall consist of one pair of 64-bit integers. The meaning of these integers is
defined in §7.3.5.

7.3.3.2 Bytes Following Main Table

The main data table may be followed by a supplemental data area called the heap. The
size of the supplemental data area, in bytes, is specified by the value of the PCOUNT

keyword. The use of this data area is described in §7.3.5.

7.3.4 Data Display

The indexed TDISPn keyword may be used to describe the recommended format for
the displaying an ASCII text representation of the contents of field n. The permitted
display format codes for each type of data (i.e., character strings, logical, integer, or
real) are given in Table 7.8 and described below.

Character data If the table column contains a character string (with TFORMn =

’rA’) then the TFORMn format code must be ’Aw’ where w is the number of characters
to display. If the character datum has length less than or equal to w, it is represented
on output right-justified in a string of w characters. If the character datum has length
greater than w, the first w characters of the datum are represented on output in a string
of w characters. Character data are not surrounded by single or double quotation marks
unless those marks are themselves part of the data value.

Logical data If the table column contains logical data (with TFORMn = ’rL’) then
the TFORMn format code must be ’Lw’ where w is the width in characters of the display
field. Logical data are represented on output with the character T for true or F for false
right-justified in a space-filled string of w characters. A null value may be represented
by a string of w space characters.

FITS Standard



7.3. BINARY TABLE EXTENSION 65

Integer data If the table column contains integer data (with TFORMn = ’rX’, ’rB’,

’rI’, ’rJ’, or ’rK’) then the TFORMn format code may have any of these forms: Iw.m,
Bw.m, Ow.m, orZw.m. The default value of m is one and the ‘.m’ is optional. The first
letter of the code specifies the number base for the encoding with I for decimal (10),
B for binary (2), O for octal (8), and Z for hexadecimal (16). Hexadecimal format uses
the upper-case letters A through F to represent decimal values 10 through 15. The
output field consists of w characters containing zero or more leading spaces followed by
a minus sign if the internal datum is negative (only in the case of decimal encoding with
the I format code) followed by the magnitude of the internal datum in the form of an
unsigned integer constant in the specified number base with only as many leading zeros
as are needed to have at least m numeric digits. Note that m ≤ w is allowed if all values
are positive, but m < w is required if any values are negative. If the number of digits
required to represent the integer datum exceeds w, then the output field consists of a
string of w asterisk (*) characters.

Real data If the table column contains real data (with TFORMn = ’rE’, or ’rD’)
or contains integer data (with any of the TFORMn format codes listed in the previous
paragraph) which are recommended to be displayed as real values (i.e., especially in cases
where the integer values represent scaled physical values using Eq. 7.1), then the TFORMn
format code may have any of these forms: Fw.d, Ew.dEe, Dw.dEe, ENw.d, or ESw.d. In
all cases, the output is a string of w characters including the decimal point, any sign
characters, and any exponent including the exponent’s indicators, signs, and values. If
the number of digits required to represent the real datum exceeds w, then the output
field consists of a string of w asterisk (*) characters. In all cases, d specifies the number
of digits to appear to the right of the decimal point. The F format code output field
consists of w−d−1 characters containing zero or more leading spaces followed by a minus
sign if the internal datum is negative followed by the absolute magnitude of the internal
datum in the form of an unsigned integer constant. These characters are followed by a
decimal point (‘.’) and d characters giving the fractional part of the internal datum,
rounded by the normal rules of arithmetic to d fractional digits. For the E and D format
codes, an exponent is taken such that the fraction 0.1 ≤ |datum|/10exponent < 1.0. The
fraction (with appropriate sign) is output with an F format of width w−e−2 characters
with d characters after the decimal followed by an E or D followed by the exponent as
a signed e + 1 character integer with leading zeros as needed. The default value of e
is 2 when the Ee portion of the format code is omitted. If the exponent value will not
fit in e + 1 characters but will fit in e + 2 then the E (or D) is omitted and the wider
field used. If the exponent value will not fit (with a sign character) in e+ 2 characters,
then the entire w-character output field is filled with asterisks (*). The ES format code
is processed in the same manner as the E format code except that the exponent is taken
so that 1.0 ≤ fraction < 10. The EN format code is processed in the same manner as the
E format code except that the exponent is taken to be an integer multiple of 3 and so

FITS Standard



66 SECTION 7. STANDARD EXTENSIONS

that 1.0 ≤ fraction < 1000.0. All real format codes have number base 10. There is no
difference between E and D format codes on input other than an implication with the
latter of greater precision in the internal datum.

The Gw.dEe format code may be used with data of any type. For data of type integer,
logical, or character, it is equivalent to Iw, Lw, or Aw, respectively. For data of type real,
it is equivalent to an F format (with different numbers of characters after the decimal)
when that format will accurately represent the value and is equivalent to an E format
when the number (in absolute value) is either very small or very large. Specifically, for
real values outside the range 0.1 − 0.5×10−d−1 ≤ value < 10d − 0.5, it is equivalent
to Ew.dEe. For real values within the above range, it is equivalent to Fw′.d′ followed by
2 + e spaces, where w′ = w− e− 2 and d′ = d− k for k = 0, 1, . . . , d if the real datum
value lies in the range 10k−1

(

1 − 0.5×10−d
)

≤ value ≤ 10k
(

1 − 0.5×10−d
)

.

Complex data If the table column contains complex data (with TFORMn = ’rC’, or
’rM’) then the may be displayed with any of the real data formats as described above.
The same format is used for the real and imaginary parts. It is recommended that the
2 values be separated by a comma and enclosed in parentheses with a total field width
of 2w + 3.

7.3.5 Variable-Length Arrays

One of the most attractive features of binary tables is that any field of the table can be
an array. In the standard case this is a fixed size array, i.e., a fixed amount of storage
is allocated in each row for the array data—whether it is used or not. This is fine so
long as the arrays are small or a fixed amount of array data will be stored in each field,
but if the stored array length varies for different rows, it is necessary to impose a fixed
upper limit on the size of the array that can be stored. If this upper limit is made
too large excessive wasted space can result and the binary table mechanism becomes
seriously inefficient. If the limit is set too low then storing certain types of data in the
table could become impossible.

The variable-length array construct presented here was devised to deal with this
problem. Variable-length arrays are implemented in such a way that, even if a table
contains such arrays, a simple reader program that does not understand variable-length
arrays will still be able to read the main data table (in other words a table containing
variable-length arrays conforms to the basic binary table standard). The implementation
chosen is such that the rows in the main data table remain fixed in size even if the table
contains a variable-length array field, allowing efficient random access to the main data
table.

Variable-length arrays are logically equivalent to regular static arrays, the only dif-
ferences being 1) the length of the stored array can differ for different rows, and 2) the
array data are not stored directly in the main data table. Since a field of any data

FITS Standard



7.3. BINARY TABLE EXTENSION 67

type can be a static array, a field of any data type can also be a variable-length array
(excluding the type P and Q variable-length array descriptors themselves, which are not
a data type so much as a storage class specifier). Other established FITS conventions
that apply to static arrays will generally apply as well to variable-length arrays.

A variable-length array is declared in the table header with one of the following 2
special field data type specifiers

rPt(emax)

rQt(emax)

where the ‘P’ or ‘Q’ indicates the presence of an array descriptor (described below),
the element count r should be 0, 1, or absent, t is a character denoting the data type of
the array data (L, X, B, I, J, K, etc., but not P or Q), and emax is a quantity guaranteed to
be equal to or greater than the maximum number of elements of type t actually stored
in any row of the table. There is no built-in upper limit on the size of a stored array
(other than the fundamental limit imposed by the range of the array descriptor, defined
below); emax merely reflects the size of the largest array actually stored in the table,
and is provided to avoid the need to preview the table when, for example, reading a
table containing variable-length elements into a database that supports only fixed size
arrays. There may be additional characters in the TFORMn keyword following the emax.

For example,

TFORM8 = ’PB(1800)’ / Variable byte array

indicates that field 8 of the table is a variable-length array of type byte, with a maximum
stored array length not to exceed 1800 array elements (bytes in this case).

The data for the variable-length arrays in a table are not stored in the main data
table; they are stored in a supplemental data area, the heap, following the main data
table. What is stored in the main data table field is an array descriptor. This consists
of two 32-bit signed integer values in the case of ‘P’ array descriptors, or two 64-bit
signed integer values in the case of ‘Q’ array descriptors: the number of elements (array
length) of the stored array, followed by the zero-indexed byte offset of the first element
of the array, measured from the start of the heap area. The meaning of a negative
value for either of these integers is not defined by this standard. Storage for the array
is contiguous. The array descriptor for field N as it would appear embedded in a table
row is illustrated symbolically below:

. . . [field N–1] [(nelem,offset)] [field N+1] . . .

If the stored array length is zero there is no array data, and the offset value is
undefined (it should be set to zero). The storage referenced by an array descriptor must
lie entirely within the heap area; negative offsets are not permitted.

A binary table containing variable-length arrays consists of three principal segments,
as follows:

FITS Standard



68 SECTION 7. STANDARD EXTENSIONS

[table header] [main data table] (optional gap) [heap area]

The table header consists of one or more 2880-byte header blocks with the last block
indicated by the keyword END somewhere in the block. The main data table begins with
the first data block following the last header block and is NAXIS1 × NAXIS2 bytes in
length. The zero indexed byte offset to the start of the heap, measured from the start of
the main data table, may be given by the THEAP keyword in the header. If this keyword
is missing then the heap begins with the byte immediately following main data table
(i.e., the default value of THEAP is NAXIS1×NAXIS2). This default value is the minimum
allowed value for the THEAP keyword, because any smaller value would imply that the
heap and the main data table overlap. If the THEAP keyword has a value larger than
this default value, then there is a gap between the end of the main data table and the
start of the heap. The total length in bytes of the supplemental data area following the
main data table (gap plus heap) is given by the PCOUNT keyword in the table header.

For example, suppose a table contains 5 rows which are each 168 bytes long, with
a heap area 3000 bytes long, beginning at an offset of 2880, thereby aligning the main
data table and heap areas on data block boundaries (this alignment is not necessarily
recommended but is useful for this example). The data portion of the table consists of
3 2880-byte data blocks: the first block contains the 840 bytes from the 5 rows of the
main data table followed by 2040 fill bytes; the heap completely fills the second block;
the third block contains the remaining 120 bytes of the heap followed by 2760 fill bytes.
PCOUNT gives the total number of bytes from the end of the main data table to the end of
the heap and in this example has a value of 2040+2880+120 = 5040. This is expressed
in the table header as:

NAXIS1 = 168 / Width of table row in bytes

NAXIS2 = 5 / Number of rows in table

PCOUNT = 5040 / Random parameter count

...

THEAP = 2880 / Byte offset of heap area

The values of TSCALn and TZEROn for variable-length array column entries are to be
applied to the values in the data array in the heap area, not the values of the array
descriptor. These keywords can be used to scale data values in either static or variable-
length arrays.

7.3.6 Variable-Length Array Guidelines

While the above description is sufficient to define the required features of the variable-
length array implementation, some hints regarding usage of the variable-length array
facility might also be useful.

FITS Standard



7.3. BINARY TABLE EXTENSION 69

Programs that read binary tables should take care to not assume more about the
physical layout of the table than is required by the specification. For example, there are
no requirements on the alignment of data within the heap. If efficient runtime access
is a concern one might want to design the table so that data arrays are aligned to the
size of an array element. In another case one might want to minimize storage and forgo
any efforts at alignment (by careful design it is often possible to achieve both goals).
Variable-length array data may be stored in the heap in any order, i.e., the data for row
N+1 are not necessarily stored at a larger offset than that for row N . There may be
gaps in the heap where no data are stored. Pointer aliasing is permitted, i.e., the array
descriptors for two or more arrays may point to the same storage location (this could
be used to save storage if two or more arrays are identical).

Byte arrays are a special case because they can be used to store a ‘typeless’ data
sequence. Since FITS is a machine-independent storage format, some form of machine-
specific data conversion (byte swapping, floating-point format conversion) is implied
when accessing stored data with types such as integer and floating, but byte arrays are
copied to and from external storage without any form of conversion.

An important feature of variable-length arrays is that it is possible that the stored
array length may be zero. This makes it possible to have a column of the table for
which, typically, no data are present in each stored row. When data are present the
stored array can be as large as necessary. This can be useful when storing complex
objects as rows in a table.

Accessing a binary table stored on a random access storage medium is straight-
forward. Since the rows of data in the main data table are fixed in size they can be
randomly accessed given the row number, by computing the offset. Once the row has
been read in, any variable-length array data can be directly accessed using the element
count and offset given by the array descriptor stored in that row.

Reading a binary table stored on a sequential access storage medium requires that
a table of array descriptors be built up as the main data table rows are read in. Once
all the table rows have been read, the array descriptors are sorted by the offset of the
array data in the heap. As the heap data are read, arrays are extracted sequentially
from the heap and stored in the affected rows using the back pointers to the row and
field from the table of array descriptors. Since array aliasing is permitted, it might be
necessary to store a given array in more than one field or row.

Variable-length arrays are more complicated than regular static arrays and might not
be supported by some software systems. The producers of FITS data products should
consider the capabilities of the likely recipients of their files when deciding whether or
not to use this format, and as a general rule should use it only in cases where it provides
significant advantages over the simpler fixed-length array format. In particular, the use
of variable-length arrays might present difficulties for applications that ingest the FITS
file via a sequential input stream because the application cannot fully process any rows
in the table until after the entire fixed-length table and potentially the entire heap has

FITS Standard



70 SECTION 7. STANDARD EXTENSIONS

been transmitted as outlined in the previous paragraph.

FITS Standard



71

Section 8

World Coordinate Systems

Representations of the mapping between image coordinates and physical (i.e., world)
coordinate systems (WCSs) may be represented within FITS HDUs. The keywords that
are used to express these mappings are now rigorously defined in a series of papers on
world coordinate systems [11], celestial coordinate systems [12], and spectral coordinate
systems [14]. An additional spherical projection, called HEALPix, is defined in reference
[22]. These WCS papers have been formally approved by the IAUFWG and therefore
are incorporated by reference as an official part of this Standard. The reader should
refer to these papers for additional details and background information that cannot be
included here. Various updates and corrections to the primary WCS papers have been
compiled by the authors, and are reflected in this section. Therefore, where conflicts
exist, the description in this Standard will prevail.

8.1 Basic Concepts

The essence of representing world coordinate systems in FITS is the association of vari-
ous reserved keywords with elements of a transformation (or a series of transformations),
or with parameters of a projection function. The conversion from pixel coordinates in
the data array to world coordinates is simply a matter of applying the specified trans-
formations (in order) via the appropriate keyword values; conversely, defining a WCS
for an image amounts to solving for the elements of the transformation matrix(es) or
coefficients of the function(s) of interest and recording them in the form of WCS key-
word values. The description of the WCS systems and their expression in FITS HDUs is
quite extensive and detailed, but is aided by a careful choice of notation. Key elements
of the notation are summarized in Table 8.1, and are used throughout this section. The
formal definitions of the keywords appear in the following subsections.

The conversion of image pixel coordinates to world coordinates is a multi-step pro-
cess, as illustrated in Figure 8.1.

FITS Standard



72 SECTION 8. WORLD COORDINATE SYSTEMS

Table 8.1. WCS and Celestial Coordinates Notation

Variable(s) Meaning Related FITS Keywords

i Index variable for world coordinates · · ·
j Index variable for pixel coordinates · · ·
a Alternative WCS version code · · ·
pj Pixel coordinates · · ·
rj Reference pixel coordinates CRPIXja
mij Linear transformation matrix CDi ja or PCi ja
si Coordinate scales CDELTia
(x, y) Projection plane coordinates · · ·
(φ, θ) Native longitude and latitude · · ·
(α, δ) Celestial longitude and latitude · · ·
(φ0, θ0) Native longitude and latitude of the fiducial point PVi 1a†, PVi 2a†

(α0, δ0) Celestial longitude and latitude of the fiducial point CRVALia
(αp, δp) Celestial longitude and latitude of the native pole · · ·
(φp, θp) Native longitude and latitude of the celestial pole LONPOLEa (=PVi 1a†),

LATPOLEa (=PVi 2a†)

†Associated with longitude axis i.

FITS Standard



8.1. BASIC CONCEPTS 73

Pixel
Coordinates

Linear transformation: 
translation, rotation, 

skew, scale

Rescale to
physical units

Intermediate Pixel
Coordinates

Intermediate World
Coordinates

Coordinate
projection, offset

World
Coordinates

CRPIXj,
PCi_j or 
CDi_j

CDELTi

CTYPEi,
CRVALi
PVi_m

Figure 8.1 A schematic view of converting pixel coordinates to world coordinates.

For all coordinate types, the first step is a linear transformation applied via matrix
multiplication of the vector of pixel coordinate elements, pj:

qi =
N

∑

j=1

mij(pj − rj) (8.1)

where rj are the pixel coordinate elements of the reference point, j indexes the pixel
axis, and i the world axis. The mij matrix is a non-singular, square matrix of dimension
N×N , where N is the number of world coordinate axes. The elements qi of the resulting
intermediate pixel coordinate vector are offsets, in dimensionless pixel units, from the
reference point along axes coincident with those of the intermediate world coordinates.
Thus, the conversion of qi to the corresponding intermediate world coordinate element
xi is a simple scale:

xi = siqi. (8.2)

There are three conventions for associating FITS keywords with the above trans-
formations. In the first formalism, the matrix elements mij are encoded in the PCi j
keywords and the scale factors si are encoded in the CDELTi keywords, which must have

FITS Standard



74 SECTION 8. WORLD COORDINATE SYSTEMS

non-zero values. In the second formalism Eqs. (8.1) and (8.2) are combined as

xi =
N

∑

j=1

(simij)(pj − rj) (8.3)

and the CDi j keywords encode the product simij . The third convention, that was
widely used before the development of the 2 previously described conventions but is
now deprecated, uses the CDELTi keywords to define the image scale and the CROTA2

keyword to define a bulk rotation of the image plane. The CDELTi and CROTA2 keywords
may co-exist with the CDi j keywords as an aid to old FITS interpreters, but these
keywords must be ignored by software that supports the CDi j keyword convention.
In all these formalisms the reference pixel coordinates rj are encoded in the CRPIXi
keywords, and the world coordinates at the reference point are encoded in the CRVALi
keywords. For additional details, see [11].

The third step of the process, computing the final world coordinates, depends on
the type of coordinate system, which is indicated with the value of the CTYPEi key-
word. For some simple, linear cases an appropriate choice of normalization for the scale
factors allows the world coordinates to be taken directly (or by applying a constant
offset) from the xi (e.g., some spectra). In other cases it is more complicated, and may
require the application of some non-linear algorithm (e.g., a projection, as for celestial
coordinates), which may require the specification of additional parameters. Where nec-
essary, numeric parameter values for non-linear algorithms must be specified via PVi m
keywords and character-valued parameters will be specified via PSi m keywords, where
m is the parameter number.

The application of these formalisms to coordinate systems of interest is discussed in
the following sub-sections: §8.2 describes general WCS representations (see [11]), §8.3
describes celestial coordinate systems (see [12]), and §8.4 describes spectral coordinate
systems (see [14]).

8.2 World Coordinate System Representations

A variety of keywords have been reserved for computing the coordinate values that are to
be associated with any pixel location within an array. The full set is given in Table 8.2;
those in most common usage are defined in detail below for convenience. Coordinate
system specifications may appear in HDUs that contain simple images in the primary
array or in an image extension. Images may also be stored in a multi-dimensional vector
cell of a binary table, or as a tabulated list of pixel locations (and optionally, the pixel
value) in a table. In these latter 2 types of image representations, the WCS keywords
have a different naming convention which reflects the needs of the tabular data structure
and the 8-character limit for keyword lengths, but otherwise follow exactly the same
rules for type, usage, and default values. See reference [12] for example usage of these

FITS Standard



8.2. WORLD COORDINATE SYSTEM REPRESENTATIONS 75

keywords. All forms of these reserved keywords must be used only as specified in this
Standard.

The keywords given below constitute a complete set of fundamental attributes for a
WCS description. Although their inclusion in an HDU is optional, FITS writers should
include a complete set of keywords when describing a WCS. In the event that some
keywords are missing, default values must be assumed, as specified below.

WCSAXES — [integer; default: NAXIS, or largest of WCS indexes i or j]
Number of axes in the WCS description. This keyword, if present, must precede
all WCS keywords except NAXIS in the HDU. The value of WCSAXES may exceed
the number of pixel axes for the HDU.

CTYPEi — [character; indexed; default: ‘ ’ (i.e. a linear, undefined axis)]
Type for the intermediate coordinate axis i. Any coordinate type that is not
covered by this standard or an officially recognized FITS convention shall be taken
to be linear. All non-linear coordinate system names must be expressed in “4–3”
form: the first four characters specify the coordinate type, the fifth character is
a hyphen (‘-’), and the remaining three characters specify an algorithm code for
computing the world coordinate value. Coordinate types with names of less than
four characters are padded on the right with hyphens, and algorithm codes with
less than three characters are padded on the right with blanks1. Algorithm codes
should be three characters.

CUNITi — [character; indexed; default: ‘ ’ (i.e., undefined)]
Physical units of CRVAL and CDELT for axis i. Note that units should always be
specified (see §4.3). Units for celestial coordinate systems defined in this Standard
must be degrees.

CRPIXj — [floating-point; indexed; default: 0.0]
Coordinate of the reference point along the pixel axis j. Note that the reference
point may lie outside the image.

CRVALi — [floating-point; indexed; default: 0.0]
World Coordinate value at the reference point of axis i.

CDELTi — [floating-point; indexed; default: 1.0]
Increment of the world coordinate at the reference point for axis i.

CROTAi — [floating-point; indexed; default: 0.0]
The amount of rotation from the standard coordinate system to a different coor-
dinate system. Further use of this of this keyword is deprecated, in favor of the
newer formalisms that use the CDi j or PCi j keywords to define the rotation.

1Example: ‘RA---UV ’.

FITS Standard



76 SECTION 8. WORLD COORDINATE SYSTEMS

Table 8.2. Reserved WCS Keywords

Keyword Primary BINTABLE vector Pixel List
Description Array primary alternative primary alternative

Coordinate dimensionality WCSAXESa WCAXna . . .
Axis type CTYPEia iCTYPn iCTYna TCTYPn TCTYna

Axis units CUNITia iCUNIn iCUNna TCUNIn TCUNna

Reference value CRVALia iCRVLn iCRVna TCRVLn TCRVna

Coordinate increment CDELTia iCDLTn iCDEna TCDLTn TCDEna

Reference point CRPIXja jCRPXn jCRPna TCRPXn TCRPna

Coordinate rotation1 CROTAi iCROTn TCROTn

Transformation matrix2 PCi ja ijPCna TPCn ka or TPn ka

Transformation matrix2 CDi ja ijCDna TCDn ka or TCn ka

Coordinate parameter PVi ma iPVn ma or iVn ma TPVn ma or TVn ma

Coordinate parameter array · · · iVn Xa · · ·

Coordinate parameter PSi ma iPSn ma or iSn ma TPSn ma or TSn ma

Coordinate name WCSNAMEa WCSNna TWCSna

Coordinate axis name CNAMEia iCNAna TCNAna

Random error CRDERia iCRDna TCRDna

Systematic error CSYERia iCSYna TCSYna

WCS cross-ref. target · · · WCSTna · · ·

WCS cross reference · · · WCSXna · · ·

Coordinate rotation LONPOLEa LONPna LONPna

Coordinate rotation LATPOLEa LATPna LATPna

Coordinate epoch EQUINOXa EQUIna EQUIna

Date of observation MJD-OBS MJDOBn MJDOBn

Average date of obs MJD-AVG MJDAn MJDAn

Average date/time of obs DATE-AVG DAVGn DAVGn

Reference frame RADESYSa or RADEna RADEna

RADECSYS

Line rest frequency (Hz) RESTFRQa RFRQna RFRQna

Line rest freq (alternate) RESTFREQ · · · · · ·

Line rest vac wavelength (m) RESTWAVa RWAVna RWAVna

Spectral reference frame SPECSYSa SPECna SPECna

Spectral reference frame SSYSOBSa SOBSna SOBSna

Spectral reference frame SSYSSRCa SSRCna SSRCna

Observation X (m) OBSGEO-X OBSGXn OBSGXn

Observation Y (m) OBSGEO-Y OBSGYn OBSGYn

Observation Z (m) OBSGEO-Z OBSGZn OBSGZn

Radial velocity (m s−1) VELOSYSa VSYSna VSYSna

Redshift of source ZSOURCEa ZSOUna ZSOUna

Angle of true velocity VELANGLa VANGna VANGna

1CROTAi form is deprecated but still in common use. It must not be used with PC i j, PV i m, and
PS i m.

2PCi j and CDi j forms of the transformation matrix are mutually exclusive, and must not appear
together in the same HDU.

Note. — The indexes i and j are pixel and intermediate world coordinate axis numbers, re-
spectively. Within a table, the index n refers to a column number, and m refers to a coordinate
parameter number. The indicator a is either blank (for the primary coordinate description) or a
character A through Z that specifies the coordinate version. See text.

FITS Standard



8.2. WORLD COORDINATE SYSTEM REPRESENTATIONS 77

PCi j — [floating-point; defaults: 1.0 when i = j, 0.0 otherwise]
Linear transformation matrix between pixel axes j and intermediate coordinate
axes i. The PCi j matrix must not be singular.

CDi j — [floating-point; defaults: 0.0, but see below]
Linear transformation matrix (with scale) between pixel axes j and intermediate
coordinate axes i. This nomenclature is equivalent to PCi j when CDELTi is unity.
The CDi j matrix must not be singular. Note that the CDi j formalism is an
exclusive alternative to PCi j, and the CDi j and PCi j keywords must not appear
together within an HDU.

In addition to the restrictions noted above, if any CDi j keywords are present in the
HDU, all other unspecified CDi j keywords shall default to zero. If no CDi j keywords
are present then the header shall be interpreted as being in PCi j form whether or not
any PCi j keywords are actually present in the HDU.

Some non-linear algorithms that describe the transformation between pixel and in-
termediate coordinate axes require parameter values. A few non-linear algorithms also
require character-valued parameters, e.g., table lookups require the names of the ta-
ble extension and the columns to be used. Where necessary parameter values must be
specified via the following keywords:

PVi m — [floating-point]
Numeric parameter values for intermediate world coordinate axis i, where m is
the parameter number. Leading zeros must not be used, and m may have only
values in the range 0 through 99, and that are defined for the particular non-linear
algorithm.

PSi m — [character]
Character-valued parameters for intermediate world coordinate axis i, where m is
the parameter number. Leading zeros must not be used, and m may have only
values in the range 0 through 99, and that are defined for the particular non-linear
algorithm.

The following keywords, while not essential for a complete specification of an im-
age WCS, can be extremely useful for readers to interpret the accuracy of the WCS
representation of the image.

CRDERi — [floating-point; default: 0.0]
Random error in coordinate i, which must be non-negative.

CSYERi — [floating-point; default: 0.0]
Systematic error in coordinate i, which must be non-negative.

FITS Standard



78 SECTION 8. WORLD COORDINATE SYSTEMS

These values should give a representative average value of the error over the range of the
coordinate in the HDU. The total error in the coordinates would be given by summing
the individual errors in quadrature.

8.2.1 Alternative WCS Axis Descriptions

In some cases it is useful to describe an image with more than one coordinate type2.
Alternative WCS descriptions may be added to the header by adding the appropriate
sets of WCS keywords, and appending to all keywords in each set an alphabetic code in
the range A through Z. Keywords that may be used in this way to specify a coordinate
system version are indicated in Table 8.2 with the suffix a. All implied keywords with
this encoding are reserved keywords, and must only be used in FITS HDUs as specified in
this Standard. The axis numbers must lie in the range 1 through 99, and the coordinate
parameter m must lie in the range 0 through 99, both with no leading zeros.

The primary version of the WCS description is that specified with a as the blank
character. Alternative axis descriptions are optional, but must not be specified unless
the primary WCS description is also specified. If an alternative WCS description is
specified, all coordinate keywords for that version must be given even if the values do
not differ from those of the primary version. Rules for the default values of alternative
coordinate descriptions are the same as those for the primary description. The alter-
native descriptions are computed in the same fashion as the primary coordinates. The
type of coordinate depends on the value of CTYPEia, and may be linear in one of the
alternative descriptions and non-linear in another.

The alternative version codes are selected by the FITS writer; there is no requirement
that the codes be used in alphabetic sequence, nor that one coordinate version differ in
its parameter values from another. An optional keyword WCSNAMEa is also defined to
name, and otherwise document, the various versions of WCS descriptions:

WCSNAMEa — [character; default for a: ‘ ’ (i.e., blank, for the primary WCS, else a
character A through Z that specifies the coordinate version]
Name of the world coordinate system represented by the WCS keywords with the
suffix a. Its primary function is to provide a means by which to specify a particular
WCS if multiple versions are defined in the HDU.

8.3 Celestial Coordinate System Representations

The conversion from intermediate world coordinates (x, y) in the plane of projection to
celestial coordinates involves two steps: a spherical projection to native longitude and

2Examples include the frequency, velocity, and wavelength along a spectral axis (only one of which,
of course, could be linear), or the position along an imaging detector in both meters and degrees on the
sky.

FITS Standard



8.3. CELESTIAL COORDINATE SYSTEM REPRESENTATIONS 79

latitude (φ, θ), defined in terms of a convenient coordinate system (i.e., native spherical
coordinates), followed by a spherical rotation of these native coordinates to the required
celestial coordinate system (α, δ). The algorithm to be used to define the spherical
projection must be encoded in the CTYPEi keyword as the three-letter algorithm code,
the allowed values for which are specified in Table 8.3 and defined in references [12] and
[22]. The target celestial coordinate system is also encoded into the left-most portion
of the CTYPEi keyword as the coordinate type.

For the final step, the parameter LONPOLEa must be specified, which is the native lon-
gitude of the celestial pole, φp. For certain projections (such as cylindricals and conics,
which are less commonly used in astronomy), the additional keyword LATPOLEa must be
used to specify the native latitude of the celestial pole. See [12] for the transformation
equations and other details.

The accepted celestial coordinate systems are: the standard equatorial (RA-- and
DEC-), and others of the form xLON and xLAT for longitude-latitude pairs, where x is G
for Galactic, E for ecliptic, H for helioecliptic and S for supergalactic coordinates. Since
the representation of planetary, lunar, and solar coordinate systems could exceed the
26 possibilities afforded by the single character x, pairs of the form yzLN and yzLT may
be used as well.

RADESYSa — [character; default: FK4, FK5, or ICRS: see below]
Name of the reference frame of equatorial or ecliptic coordinates, whose value
must be one of those specified in Table 8.4. The default value is FK4 if the value of
EQUINOXa < 1984.0, FK5 if EQUINOXa ≥ 1984.0, or ICRS if EQUINOXa is not given.

EQUINOXa — [floating; default: see below]
Epoch of the mean equator and equinox in years, whose value must be non-
negative. The interpretation of epoch depends upon the value of RADESYSa if
present: Besselian if the value is FK4 or FK4-NO-E, Julian if the value is FK5; not
applicable if the value is ICRS or GAPPT.

MJD-OBSa — [floating-point; default: DATE-OBS if given, otherwise no default]
Modified Julian Date (JD – 2,400,000.5) of the observation, whose value corre-
sponds (by default) to the start of the observation, unless another interpretation
is explained in the comment field.

LONPOLEa — [floating-point; default: φ0 if δ0 ≥ θ0, φ0 + 180◦ otherwise]
Longitude in the native coordinate system of the celestial system’s north pole.
Normally, φ0 is zero unless a non-zero value has been set for PVi 1a, which is asso-
ciated with the longitude axis. This default applies for all values of θ0, including
θ0 = 90◦, although the use of non-zero values of θ0 are discouraged in that case.

LATPOLEa — [floating-point; default: 90◦, or no default if (θ0, δ0, φp−φ0) = (0, 0,±90◦)]
Latitude in the native coordinate system of the celestial system’s north pole, or

FITS Standard



80 SECTION 8. WORLD COORDINATE SYSTEMS

Table 8.3. Reserved Celestial Coordinate Algorithm Codes

Default
Code φ0 θ0 Properties1 Projection Name

Zenithal (azimuthal) projections
AZP 0◦ 90◦ §5.1.1 Zenithal perspective
SZP 0◦ 90◦ §5.1.2 Slant zenithal perspective
TAN 0◦ 90◦ §5.1.3 Gnomonic
STG 0◦ 90◦ §5.1.4 Stereographic
SIN 0◦ 90◦ §5.1.5 Slant orthographic
ARC 0◦ 90◦ §5.1.6 Zenithal equidistant
ZPN 0◦ 90◦ §5.1.7 Zenithal polynomial
ZEA 0◦ 90◦ §5.1.8 Zenithal equal-area
AIR 0◦ 90◦ §5.1.9 Airy

Cylindrical projections
CYP 0◦ 0◦ §5.2.1. Cylindrical perspective
CEA 0◦ 0◦ §5.2.2 Cylindrical equal area
CAR 0◦ 0◦ §5.2.3 Plate carrée
MER 0◦ 0◦ §5.2.4 Mercator

Pseudo-cylindrical and related projections
SFL 0◦ 0◦ §5.3.1 Samson-Flamsteed
PAR 0◦ 0◦ §5.3.2 Parabolic
MOL 0◦ 0◦ §5.3.3 Mollweide
AIT 0◦ 0◦ §5.3.4 Hammer-Aitoff

Conic projections
COP 0◦ θa §5.4.1 Conic perspective
COE 0◦ θa §5.4.2 Conic equal-area
COD 0◦ θa §5.4.3 Conic equidistant
COO 0◦ θa §5.4.4 Conic orthomorphic

Polyconic and pseudoconic projections
BON 0◦ 0◦ §5.5.1 Bonne’s equal area
PCO 0◦ 0◦ §5.5.2 Polyconic

Quad-cube projections
TSC 0◦ 0◦ §5.6.1 Tangential spherical cube
CSC 0◦ 0◦ §5.6.2 COBE quadrilateralized spherical cube
QSC 0◦ 0◦ §5.6.3 Quadrilateralized spherical cube

HEALPix grid projection
HPX 0◦ 0◦ §62 HEALPix grid

1Refer to the indicated section in reference [12] for a detailed description.

2This projection is defined in reference [22].

FITS Standard



8.4. SPECTRAL COORDINATE SYSTEM REPRESENTATIONS 81

Table 8.4. Allowed Values of RADESYSa

Value Definition

ICRS International Celestial Reference System
FK5 Mean place, new (IAU 1984) system
FK41 Mean place, old (Bessell-Newcomb) system
FK4-NO-E1 Mean place: but without eccentricity terms
GAPPT Geocentric apparent place, IAU 1984 system

1New FITS files should avoid using these older reference
systems.

equivalently, the latitude in the celestial coordinate system of the native system’s
north pole. May be ignored or omitted in cases where LONPOLEa completely spec-
ifies the rotation to the target celestial system.

8.4 Spectral Coordinate System Representations

This section discusses the conversion of intermediate world coordinates to spectral co-
ordinates with common axes such as frequency, wavelength, and apparent radial ve-
locity (represented here with the coordinate variables ν, λ, or v). The key point for
constructing spectral WCS in FITS is that one of these coordinates must be sampled
linearly in the dispersion axis; the others are derived from prescribed, usually non-linear
transformations. Frequency and wavelength axes may also be sampled linearly in their
logarithm.

Following the convention for the CTYPEia keyword, when i is the spectral axis the first
four characters must specify a code for the coordinate type; for non-linear algorithms
the fifth character must be a hyphen, and the next three characters must specify a
predefined algorithm for computing the world coordinates from the intermediate physical
coordinates. The coordinate type must be one of those specified in Table 8.5. When
the algorithm is linear, the remainder of the CTYPEia keyword must be blank. When
the algorithm is non-linear, the 3-letter algorithm code must be one of those specified
in Table 8.6. The relationships between the basic physical quantities ν, λ, and v, as well
as the relationships between various derived quantities are given in reference [14].

The generality of the algorithm for specifying the spectral coordinate system and
its representation suggests that some additional description of the coordinate may be

FITS Standard



82 SECTION 8. WORLD COORDINATE SYSTEMS

Table 8.5. Reserved Spectral Coordinate Type Codes1

Code Type Symbol Assoc. Variable Default Units

FREQ Frequency ν ν Hz
ENER Energy E ν J
WAVN Wavenumber κ ν m−1

VRAD Radio velocity V ν m s−1

WAVE Vacuum wavelength λ λ m
VOPT Optical velocity Z λ m s−1

ZOPT Redshift z λ · · ·
AWAV Air wavelength λa λa m
VELO Apparent radial velocity v v m s−1

BETA Beta factor (v/c) β v · · ·

1Characters 1 through 4 of the value of the keyword CTYPEia.

helpful beyond what can be encoded in the the first four characters of the CTYPEia
keyword; CNAMEia is reserved for this purpose. Note that this keyword provides a name
for an axis in a particular WCS, while the WCSNAMEa keyword names the particular WCS
as a whole. In order to convert between some form of radial velocity and either frequency
or wavelength, the keywords RESTFRQa and RESTWAVa, respectively, are reserved.

CNAMEia — [character; default: default: ‘ ’ (i.e. a linear, undefined axis)]
Spectral coordinate description which must not exceed 68 characters in length.

RESTFRQa — [floating-point; default: none]
Rest frequency of the of the spectral feature of interest. The physical unit must
be Hz.

RESTWAVa — [floating-point; default: none]
Vaccuum rest wavelength of the of the spectral feature of interest. The physical
unit must be m.

One or the other of RESTFRQa or RESTWAVa should be given when it is meaningful to do
so.

FITS Standard



8.4. SPECTRAL COORDINATE SYSTEM REPRESENTATIONS 83

Table 8.6. Non-linear Spectral Algorithm Codes

Code Regularly sampled in Expressed as

F2W Frequency Wavelength
F2V Apparent radial velocity
F2A Air wavelength
W2F Wavelength Frequency
W2V Apparent radial velocity
W2A Air wavelength
V2F Apparent radial velocity Frequency
V2W Wavelength
V2A Air wavelength
A2F Air wavelength Frequency
A2W Wavelength
A2V Apparent radial velocity
LOG Logarithm Any 4-letter coordinate type
GRI Detector Any from Table 8.5
GRA Detector Any from Table 8.5
TAB Not regular Any 4-letter coordinate type

1Characters 6 through 8 of the value of the keyword CTYPEia.

FITS Standard



84 SECTION 8. WORLD COORDINATE SYSTEMS

8.4.1 Spectral Coordinate Reference Frames

Frequencies, wavelengths, and apparent radial velocities are always referred to some
selected standard of rest (i.e., reference frame). While the spectra are obtained they
are, of necessity, in the observer’s rest frame. The velocity correction from topocentric
(the frame in which the measurements are usually made) to standard reference frames
(which must be one of those given in Table 8.6) are dependent on the dot product with
time-variable velocity vectors. That is, the velocity with respect to a standard reference
frame depends upon direction, and the velocity (and frequency and wavelength) with
respect to the local standard of rest is a function of the celestial coordinate within the
image. The keywords SPECSYSa and SSYSOBSa are reserved and, if used, must describe
the reference frame in use for the spectral axis coordinate(s) and the spectral reference
frame that was held constant during the observation, respectively. In order to compute
the velocities it is necessary to have the date and time of the observation; the keywords
DATE-AVG and MJD-AVG are reserved for this purpose.

DATE-AVG — [character; default: none]
Calendar date of the mid-point of the observation, expressed in the same way as
the DATE-OBSkeyword.

MJD-AVG — [floating-point; default: none]
Modified Julian Date (JD – 2,400,000.5) of the mid-point of the observation.

SPECSYSa — [character; default: none]
The reference frame in use for the spectral axis coordinate(s). Valid values are
given in Table 8.7.

SSYSOBSa — [character; default: TOPOCENT]
The spectral reference frame that is constant over the range of the non-spectral
world coordinates. Valid values are given in Table 8.7.

The transformation from the rest frame of the observer to a standard reference
frame requires a specification of the location on Earth3 of the instrument used for the
observation. The location, if specified, shall be represented as a geocentric Cartesian
triple with respect to a standard ellipsoidal geoid at the time of the observation. For
details, see reference [14].

OBSGEO-Xa — [floating-point; default: none]
X−coordinate (in meters) of a cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame, where the observation
took place. The coordinate must be valid at the epoch MJD-AVG or DATE-AVG.

3The specification of location for an instrument on a spacecraft in flight requires an ephemeris;
keywords that might be required in this circumstance are not defined here.

FITS Standard



8.4. SPECTRAL COORDINATE SYSTEM REPRESENTATIONS 85

OBSGEO-Ya — [floating-point; default: none]
Y −coordinate (in meters) of a cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame, where the observation
took place. The coordinate must be valid at the epoch MJD-AVG or DATE-AVG.

OBSGEO-Za — [floating-point; default: none]
Z−coordinate (in meters) of a cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame, where the observation
took place. The coordinate must be valid at the epoch MJD-AVG or DATE-AVG.

Information on the relative radial velocity between the observer and the selected
standard of rest in the direction of the celestial reference coordinate may be provided,
and if so shall be given by the VELOSYSa4 keyword. The frame of rest defined with
respect to the emitting source may be represented in FITS; for this reference frame it is
necessary to define the velocity with respect to some other frame of rest. The keywords
SPECSYSa and ZSOURCEa are used to document the choice of reference frame and the
value of the systemic velocity of the source, respectively.

SSYSSRCa — [character; default: none]
Reference frame for the value expressed in the ZSOURCEa keyword to document
the systemic velocity of the observed source. Value must be one of those given in
Table 8.7 except for SOURCE.

VELOSYSa — [floating-point; default: none]
Relative radial velocity betwen the observer and the selected standard of rest in
the direction of the celestial reference coordinate. Units must be m s−1.

ZSOURCEa — [floating-point; default: none]
Radial velocity with respect to an alternative frame of rest, expressed as a unitless
redshift (i.e., velocity as a fraction of the speed of light in vacuum). Used in
conjunction with ZSOURCEa to document the systemic velocity of the observed
source.

VELANGLa — [floating-point; default:+90.]
In the case of relativistic velocities (e.g., a beamed astrophysical jet) the trans-
verse velocity component is important. This keyword may be used to express the
orientation of the space velocity vector with respect to the plane of the sky. See
appendix A of reference [14] for further details.

4Note that the CUNITka keyword is not used for this purpose (for the case where spectra are stored
in binary tables), since the WCS version a might not be expressed in velocity units.

FITS Standard



86 SECTION 8. WORLD COORDINATE SYSTEMS

Table 8.7. Spectral Reference Systems

Value Definition

TOPOCENT Topocentric
GEOCENTR Geocentric
BARYCENT Barycentric
HELIOCEN Heliocentric
LSRK Local standard of rest (kinematic)
LSRD Local standard of rest (dynamic)
GALACTOC Galactocentric
LOCALGRP Local Group
CMBDIPOL Cosmic microwave background dipole
SOURCE Source rest frame

Note. — These are the allowed values of the
SPECSYSa, SSYSOBSa, and SSYSSRCa keywords.

FITS Standard



87

Appendix A

Formal Syntax of Keywords

This Appendix is not part of the FITS standard but is included for conve-
nient reference.

The following notation is used in defining the formal syntax.

:= means ‘is defined to be’
X | Y means one of X or Y (no ordering relation is implied)
[X] means that X is optional
X... means X is repeated 1 or more times
‘B’ means the ASCII character B
‘A’–‘Z’ means one of the ASCII characters A through Z in the ASCII

collating sequence, as shown in Appendix D
\0xnn means the ASCII character associated with the hexadecimal code nn
{...} expresses a constraint or a comment (it immediately follows the syntax rule)

The following statements define the formal syntax used in FITS free-format keyword
records.

FITS keyword record :=
FITS commentary keyword record | FITS value keyword record

FITS commentary keyword record :=
COMMENT keyword [ascii text char...] |
HISTORY keyword [ascii text char...] |
BLANKFIELD keyword [ascii text char...] |
keyword field anychar but equal [ascii text char...] |
keyword field ‘=’ anychar but space [ascii text char...]

{Constraint: The total number of characters in a FITS commentary keyword record

FITS Standard



88 APPENDIX A. FORMAL SYNTAX OF KEYWORDS

must be exactly equal to 80.}

FITS value keyword record :=
keyword field value indicator [space...] [value] [space...] [comment]

{Constraint: The total number of characters in a FITS value keyword record must be
exactly equal to 80.}
{Comment: If the value field is not present, the value of the FITS keyword is not de-
fined.}

keyword field :=
[keyword char...] [space...]

{Constraint: The total number of characters in the keyword field must be exactly equal
to 8.}

keyword char :=
‘A’–‘Z’ | ‘0’–‘9’ | ‘ ’ | ‘-’

COMMENT keyword :=
‘C’ ‘O’ ‘M’ ‘M’ ‘E’ ‘N’ ‘T’ space

HISTORY keyword :=
‘H’ ‘I’ ‘S’ ‘T’ ‘O’ ‘R’ ‘Y’ space

BLANKFIELD keyword :=
space space space space space space space space

value indicator :=
‘=’ space

space :=
‘ ’

comment :=
‘/’ [ascii text char...]

ascii text char :=
space–‘~’

anychar but equal :=
space–‘<’ | ‘>’–‘~’

FITS Standard



89

anychar but space :=
‘!’–‘~’

value :=
character string value | logical value | integer value | floating value |
complex integer value | complex floating value

character string value :=
begin quote [string text char...] end quote

{Constraint: The begin quote and end quote are not part of the character string value
but only serve as delimiters. Leading spaces are significant; trailing spaces are not.}

begin quote :=
quote

end quote :=
quote

{Constraint: The ending quote must not be immediately followed by a second quote.}

quote :=
\0x27

string text char :=
ascii text char

{Constraint: A string text char is identical to an ascii text char except for the quote
char; a quote char is represented by two successive quote chars.}

logical value :=
‘T’ | ‘F’

integer value :=
[sign] digit [digit...]

{Comment: Such an integer value is interpreted as a signed decimal number. It may
contain leading zeros.}

sign :=
‘-’ | ‘+’

digit :=
‘0’–‘9’

FITS Standard



90 APPENDIX A. FORMAL SYNTAX OF KEYWORDS

floating value :=
decimal number [exponent]

decimal number :=
[sign] [integer part] [‘.’ [fraction part]]

{Constraint: At least one of the integer part and fraction part must be present.}

integer part :=
digit | [digit...]

fraction part :=
digit | [digit...]

exponent :=
exponent letter [sign] digit [digit...]

exponent letter :=
‘E’ | ‘D’

complex integer value :=
‘(’ [space...] real integer part [space...] ‘,’ [space...]
imaginary integer part [space...] ‘)’

real integer part :=
integer value

imaginary integer part :=
integer value

complex floating value :=
‘(’ [space...] real floating part [space...] ‘,’ [space...]
imaginary floating part [space...] ‘)’

real floating part :=
floating value

imaginary floating part :=
floating value

FITS Standard



91

Appendix B

Suggested Time Scale
Specification

This Appendix is not part of the FITS standard, but is included for conve-
nient reference.

1. Use of the keyword TIMESYS is suggested as an implementation of the time scale
specification. It sets the principal time system for time-related keywords and
data in the HDU (i.e., it does not preclude the addition of keywords or data
columns that provide information for transformations to other time scales, such
as sidereal times or barycenter corrections). Each HDU shall contain not more
than one TIMESYS keyword. Initially, officially allowed values are shown below.
For reference, see: Explanatory Supplement to the Astronomical Almanac, P. K.
Seidelmann, ed., University Science Books, 1992, ISBN 0-935702-68-7, or

http://tycho.usno.navy.mil/systime.html

UTC Coordinated Universal Time; defined since 1972.

UT Universal Time, equal to Greenwich Mean Time (GMT) since 1925; the UTC
equivalent before 1972; see: Explanatory Supplement, p. 76.

TAI International Atomic Time; ‘UTC without the leap seconds’; 31 s ahead of
UTC on 1997-07-01.

AT International Atomic Time; deprecated synonym of TAI.

ET Ephemeris Time, the predecessor of TT and TDB; valid until 1984.

TT Terrestrial Time, the IAU standard time scale since 1984; continuous with ET
and synchronous with (but 32.184 s ahead of) TAI.

TDT Terrestrial Dynamical Time; = TT.

FITS Standard



92 APPENDIX B. SUGGESTED TIME SCALE SPECIFICATION

TDB Barycentric Dynamical Time.

TCG Geocentric Coordinate Time; runs ahead of TT since 1977-01-01 at a rate of
approximately 22 ms/year.

TCB Barycentric Coordinate Time; runs ahead of TDB since 1977-01-01 at a rate
of approximately 0.5 s/year.

Use of Global Positioning Satellite (GPS) time (19 s behind TAI) is deprecated.

2. By default, times will be deemed to be as measured at the detector (or at the
observatory) for time scales defined on the geoid (i.e., TAI, UTC and TT). In the
case of the coordinate times TCG, TCB and TDB, the observation is assumed to
have been referred to the associated spatial origin (namely the geocenter for TCG
and the solar-system barycenter for TCB and TDB) by allowing for light time.
These defaults follow common practice; a future convention on time scale issues in
FITS files may allow other combinations but shall preserve this default behavior.
The rationale is that raw observational data are most likely to be tagged by a
clock that is synchronized with TAI, while a transformation to coordinate times
or TDB is usually accompanied by a spatial transformation, as well. This implies
that path length differences have been corrected for. Note that the same distant
event recorded in a FITS file in both TDB and UTC will have times that differ by
(typically) several minutes. Also, note that when the location is not unambiguous
(such as in the case of an interferometer) precise specification of the location is
strongly encouraged in, for instance, geocentric Cartesian coordinates.

3. Note that TT is the IAU preferred standard. It can be considered equivalent to
TDT and ET, though ET should not be used for data taken after 1984. For reference,
see: Explanatory Supplement, pp. 40-48.

4. If the TIMESYS keyword is absent or has an unrecognized value, the value UTC will
be assumed for dates since 1972, and UT for pre-1972 data.

5. Examples. The three legal representations of the date of October 14, 1996, might
be written as:

DATE-OBS= ’14/10/96’ / Original format, means 1996 Oct 14.

TIMESYS = ’UTC ’ / Explicit time scale specification: UTC.

DATE-OBS= ’1996-10-14’ / Date of start of observation in UTC.

DATE-OBS= ’1996-10-14’ / Date of start of observation, also in UTC.

TIMESYS = ’TT ’ / Explicit time scale specification: TT.

DATE-OBS= ’1996-10-14T10:14:36.123’ / Date and time of start of obs. in TT.

FITS Standard



93

6. The convention suggested in this Appendix is part of the mission-specific FITS
conventions adopted for, and used in, the RXTE archive, building on existing
High Energy Astrophysics FITS conventions. See:

http://heasarc.gsfc.nasa.gov/docs/xte/abc/time tutorial.html

http://heasarc.gsfc.nasa.gov/docs/xte/abc/time.html

The VLBA project has adopted a convention where the keyword TIMSYS, rather
than TIMESYS, is used, currently allowing the values UTC and IAT. See p. 38 and
p. 39 of:

http://www.cv.nrao.edu/fits/documents/drafts/idi-format.ps

FITS Standard



94 APPENDIX B. SUGGESTED TIME SCALE SPECIFICATION

FITS Standard



95

Appendix C

Summary of Keywords

This Appendix is not part of the FITS standard, but is included for conve-
nient reference.

All of the mandatory and reserved keywords that are defined in the standard, except
for the reserved WCS keywords that are are discussed separately in §8, are listed in the
following tables.

Primary Conforming Image ASCII Table Binary Table Random Groups
HDU Extension Extension Extension Extension Records

SIMPLE XTENSION XTENSION1 XTENSION2 XTENSION3 SIMPLE

BITPIX BITPIX BITPIX BITPIX = 8 BITPIX = 8 BITPIX

NAXIS NAXIS NAXIS NAXIS = 2 NAXIS = 2 NAXIS

NAXISn4 NAXISn4 NAXISn4 NAXIS1 NAXIS1 NAXIS1 = 0

END PCOUNT PCOUNT = 0 NAXIS2 NAXIS2 NAXISn4

GCOUNT GCOUNT = 1 PCOUNT = 0 PCOUNT GROUPS = T

END END GCOUNT = 1 GCOUNT = 1 PCOUNT

TFIELDS TFIELDS GCOUNT

TFORMn5 TFORMn5 END

TBCOLn5 END

END

1 XTENSION= ’IMAGE ’ for the image extension.
2 XTENSION= ’TABLE ’ for the ASCII table extension.
3 XTENSION= ’BINTABLE’ for the binary table extension.
4 Runs from 1 through the value of NAXIS.
5 Runs from 1 through the value of TFIELDS.

Table C.1 Mandatory FITS keywords for the structures described in this document.

FITS Standard



96 APPENDIX C. SUMMARY OF KEYWORDS

All1 Array2 Conforming ASCII Table Binary Table Random Groups
HDUs HDUs Extension Extension Extension Records

DATE BSCALE EXTNAME TSCALn TSCALn PTYPEn

ORIGIN BZERO EXTVER TZEROn TZEROn PSCALn

BLOCKED3 BUNIT EXTLEVEL TNULLn TNULLn PZEROn

AUTHOR BLANK TTYPEn TTYPEn

REFERENC DATAMAX TUNITn TUNITn

COMMENT DATAMIN TDISPn TDISPn

HISTORY TDIMn

        THEAP

DATE-OBS

TELESCOP

INSTRUME

OBSERVER

OBJECT

EQUINOX

EPOCH3

EXTEND3,4

1 These keywords are further categorized in Table C.3.
2 Primary HDU, image extension, user-defined HDUs with same array structure.
3 Deprecated.
4 Only permitted in the primary HDU

Table C.2 Reserved FITS keywords for the structures described in this document.

FITS Standard



97

Production Bibliographic Commentary Observation

DATE AUTHOR COMMENT DATE-OBS

ORIGIN REFERENC HISTORY TELESCOP

BLOCKED1         INSTRUME

OBSERVER

OBJECT

EQUINOX

EPOCH1

1 Deprecated.

Table C.3 General reserved FITS keywords described in this document.

FITS Standard



98 APPENDIX C. SUMMARY OF KEYWORDS

FITS Standard



99

Appendix D

ASCII Text

This appendix is not part of the FITS standard; the material in it is based on
the ANSI standard for ASCII [20] and is included here for informational purposes.)

In the following table, the first column is the decimal and the second column the
hexadecimal value for the character in the third column. The characters hexadecimal
20 to 7E (decimal 32 to 126) constitute the subset referred to in this document as the
restricted set of ASCII text characters.

FITS Standard



100 APPENDIX D. ASCII TEXT

ASCII Control ASCII Text

dec hex char dec hex char dec hex char dec hex char

0 00 NUL 32 20 SP 64 40 @ 96 60 ‘

1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 ’ 71 47 G 103 67 g
8 08 BS 40 28 ( 72 48 H 104 68 h
9 09 HT 41 29 ) 73 49 I 105 69 i
10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C , 76 4C L 108 6C l
13 0D CR 45 2D - 77 4D M 109 6D m
14 0E SO 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F / 79 4F O 111 6F o
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [ 123 7B {

28 1C FS 60 3C < 92 5C \ 124 7C |

29 1D GS 61 3D = 93 5D ] 125 7D }

30 1E RS 62 3E > 94 5E ^ 126 7E ~

31 1F US 63 3F ? 95 5F _ 127 7F DEL1

1 Not ASCII Text

Table D.1 ASCII character set

FITS Standard



101

Appendix E

IEEE Floating-Point Formats

The material in this Appendix is not part of this standard; it is adapted from
the IEEE-754 floating-point standard [21] and provided for informational purposes. It
is not intended to be a comprehensive description of the IEEE formats; readers should
refer to the IEEE standard.)

FITS recognizes all IEEE basic formats, including the special values.

E.1 Basic Formats

Numbers in the single and double formats are composed of the following three fields:

1. 1-bit sign s

2. Biased exponent e = E + bias

3. Fraction f = •b1b2 · · · bp−1

The range of the unbiased exponent E shall include every integer between two values
Emin and Emax, inclusive, and also two other reserved values Emin − 1 to encode ±0
and denormalized numbers, and Emax+1 to encode ±∞ and NaNs. The foregoing
parameters are given in Table E.1. Each nonzero numerical value has just one encoding.
The fields are interpreted as follows:

E.1.1 Single

A 32-bit single format number X is divided as shown in Fig. E.1. The value v of X is
inferred from its constituent fields thus

1. If e = 255 and f 6= 0, then v is NaN regardless of s

2. If e = 255 and f = 0, then v = (−1)s∞

FITS Standard



102 APPENDIX E. IEEE FLOATING-POINT FORMATS

Format
Parameter Single Double

Single Extended Double Extended

p 24 ≥ 32 53 ≥ 64
Emax +127 ≥ +1023 +1023 ≥ +16383
Emin −126 ≤ −1022 −1022 ≤ −16382
Exponent bias +127 unspecified +1023 unspecified
Exponent width in bits 8 ≥ 11 11 ≥ 15
Format width in bits 32 ≥ 43 64 ≥ 79

Table E.1 Summary of Format Parameters

3. If 0 < e < 255, then v = (−1)s2e−127(1 • f)

4. If e = 0 and f 6= 0, then v = (−1)s2e−126(0 • f) (denormalized numbers)

5. If e = 0 and f = 0, then v = (−1)s0 (zero)

1 8 23 ....widths

s e f

msb lsb msb lsb ....order

Figure E.1 Single Format. msb means most significant bit, lsb means least significant
bit

E.1.2 Double

A 64-bit double format number X is divided as shown in Fig. E.2. The value v of X is
inferred from its constituent fields thus

1. If e = 2047 and f 6= 0, then v is NaN regardless of s

2. If e = 2047 and f = 0, then v = (−1)s∞

3. If 0 < e < 2047, then v = (−1)s2e−1023(1 • f)

4. If e = 0 and f 6= 0, then v = (−1)s2e−1022(0 • f) (denormalized numbers)

FITS Standard



E.2. BYTE PATTERNS 103

5. If e = 0 and f = 0, then v = (−1)s0 (zero)

1 11 52 ....widths

s e f

msb lsb msb lsb ....order

Figure E.2 Double Format. msb means most significant bit, lsb means least significant
bit

E.2 Byte Patterns

Table E.2 shows the types of IEEE floating-point value, whether regular or special,
corresponding to all double and single precision hexadecimal byte patterns.

FITS Standard



104 APPENDIX E. IEEE FLOATING-POINT FORMATS

IEEE value Double Precision Single Precision

+0 0000000000000000 00000000

denormalized 0000000000000001 00000001

to to
000FFFFFFFFFFFFF 007FFFFF

positive underflow 0010000000000000 00800000

positive numbers 0010000000000001 00800001

to to
7FEFFFFFFFFFFFFE 7F7FFFFE

positive overflow 7FEFFFFFFFFFFFFF 7F7FFFFF

+∞ 7FF0000000000000 7F800000

NaN1 7FF0000000000001 7F800001

to to
7FFFFFFFFFFFFFFF 7FFFFFFF

−0 8000000000000000 80000000

negative 8000000000000001 80000001

denormalized to to
800FFFFFFFFFFFFF 807FFFFF

negative underflow 8010000000000000 80800000

negative numbers 8010000000000001 80800001

to to
FFEFFFFFFFFFFFFE FF7FFFFE

negative overflow FFEFFFFFFFFFFFFF FF7FFFFF

−∞ FFF0000000000000 FF800000

NaN1 FFF0000000000001 FF800001

to to
FFFFFFFFFFFFFFFF FFFFFFFF

1 Certain values may be designated as quiet NaN (no diagnostic when used) or signaling
(produces diagnostic when used) by particular implementations.

Table E.2 IEEE Floating-Point Formats

FITS Standard



105

Appendix F

Reserved Extension Type Names

This Appendix is not part of the FITS standard, but is included for infor-
mational purposes. It describes the extension type names registered as of the date
this standard was issued.) A current list is available from the FITS Support Office web
site at http://fits.gsfc.nasa.gov.

F.1 Standard Extensions

These 3 extension types have been approved by the IAUFWG and are defined in §7 of
this standard document as well as in the indicated Astronomy and Astrophysics journal
articles.

• ’IMAGE   ’ – This extension type provides a means of storing a multi-dimensional
array similar to that of the FITS primary header and data unit. Approved as a
standard extension in 1994 [8].

• ’TABLE   ’ – This ASCII table extension type contains rows and columns of data
entries expressed as ASCII characters. Approved as a standard extension in 1988
[5].

• ’BINTABLE’ – This binary table extension type provides a more flexible and ef-
ficient means of storing data structures than is provided by the TABLE extension
type. The table rows can contain a mixture of numerical, logical and character
data entries. In addition, each entry is allowed to be a single dimensioned array.
Numeric data are kept in binary formats. Approved as a standard extension in
1994 [9]. .

FITS Standard



106 APPENDIX F. RESERVED EXTENSION TYPE NAMES

F.2 Conforming Extensions

These conventions meet the requirements for a conforming extension as defined in in
§3.4.1 of this standard, however they have not been formally approved or endorsed by
the IAUFWG.

• ’IUEIMAGE’ – This name was given to the prototype of the IMAGE extension type
and was primarily used in the IUE project data archive from approximately 1992
to 1994. Except for the name, the format is identical to the IMAGE extension.

• ’A3DTABLE’ – This name was given to the prototype of the BINTABLE extension
type and was primarily used in the AIPS data processing system developed at
NRAO from about 1987 until it was replaced by BINTABLE in the early 1990s.
The format is defined in the ‘Going AIPS’ manual [23], Chapter 14. It is very
similar to the BINTABLE type except that it does not support the variable-length
array convention.

• ’FOREIGN’ – This extension type is used to put a FITS wrapper about an arbitrary
file, allowing a file or tree of files to be wrapped up in FITS and later restored
to disk. A full description of this extension type is given in the Registry of FITS
conventions on the FITS Support Office web site.

• ’COMPRESS’ – Proposed in 1991 in a draft paper by Archibald Warnock, Robert
Hill, Barbara Pfarr (all at GSFC), and D. Wells (NRAO) as a way of storing
compressed images in FITS format. See the FITSBITS email list archive of post-
ings for September and October 1991 for a discussion of image compression in
general and this proposal in particular. This compression proposal was never im-
plemented, but some of the same ideas were used in the tiled image compression
convention that is described in the Registry of FITS conventions.

• ’FITS    ’ – Suggested by Perry Greenfield (STScI) in April 2002 as a way to
hierarchically embed entire FITS files within other FITS files. See the discussion
on the FITSBITS email list in the April 2002 thread.

F.3 Other Registered Extensions

These extension names have been suggested, but the proposals have not been fully
developed or implemented.

• ’DUMP    ’ – Suggested extension name for storing a stream of binary data (such
as a telemetry stream) in a FITS file. This extension type was never implemented,
but the FOREIGN extension type serves a similar purpose.

FITS Standard



F.3. OTHER REGISTERED EXTENSIONS 107

• ’FILEMARK’ –

Suggested by Don Wells (NRAO) to represent the equivalent of a end-of-file mark
on magnetic tapes. When the FITS format was designed in the late 1970s, FITS
files were mainly written on half-inch magnetic tape where the end of a file could
easily be identified by a tape end-of-file mark. Not all other media in use at that
time supported such a clear hardware file delimiter, so the FILEMARK extension
was proposed as a way of explicitly representing the end of the FITS file.

FITS Standard



108 APPENDIX F. RESERVED EXTENSION TYPE NAMES

FITS Standard



109

Appendix G

MIME Types

This Appendix is not part of the FITS standard, but is included for infor-
mational purposes.

RFC 4047 [13] describes the registration of the Multipurpose Internet Mail Ex-
tensions (MIME) sub-types ‘application/fits’ and ‘image/fits’ to be used by the
international astronomical community for the interchange of FITS files. The MIME
type serves as a electronic tag or label that is transmitted along with the FITS file that
tells the receiving application what type of file is being transmitted. The remainder of
this appendix has been extracted verbatim from the RFC 4047 document.

The general nature of the full FITS standard requires the use of the media type
‘application/fits’. Nevertheless, the principal intent for a great many FITS files is
to convey a single data array in the primary HDU, and such arrays are very often 2-
dimensional images. Several common image viewing applications already display single-
HDU FITS files, and the prototypes for virtual observatory projects specify that data
provided by web services be conveyed by the data array in the primary HDU. These uses
justify the registration of a second media type, namely ‘image/fits’, for files which use
the subset of the standard described by the original FITS standard paper. The MIME
type ‘image/fits’ may be used to describe FITS primary HDUs that have other than
two dimensions, however it is expected that most files described as ‘image/fits’ will
have two-dimensional (NAXIS = 2) primary HDUs.

G.1 MIME type ‘application/fits’

A FITS file described with the media type ‘application/fits’ should conform to the
published standards for FITS files as determined by convention and agreement within
the international FITS community. No other constraints are placed on the content of a
file described as ‘application/fits’.

A FITS file described with the media type ‘application/fits’ may have an arbi-

FITS Standard



110 APPENDIX G. MIME TYPES

trary number of conforming extension HDUs that follow its mandatory primary header
and data unit. The extension HDUs may be one of the standard types (IMAGE, TABLE,
and BINTABLE) or any other type that satisfies the ‘Requirements for Conforming Ex-
tensions’ (§3.4.1). The primary HDU or any IMAGE extension may contain zero to 999
dimensions with zero or more pixels along each dimension.

The primary HDU may use the random groups convention, in which the dimension
of the first axis is zero and the keywords GROUPS, PCOUNT and GCOUNT appear in the
header. NAXIS1 = 0 and GROUPS = T is the signature of random groups; see §6.

G.1.1 Recommendations for Application Writers

An application intended to handle ‘application/fits’ should be able to provide a
user with a manifest of all of the HDUs that are present in the file and with all of the
keyword/value pairs from each of the HDUs.

An application intended to handle ‘application/fits’ should be prepared to en-
counter extension HDUs that contain either ASCII or binary tables, and to provide a
user with access to their elements.

An application which can modify FITS files or retrieve FITS files from an external
service should be capable of writing such files to a local storage medium.

Complete interpretation of the meaning and intended use of the data in each of
the HDUs typically requires the use of heuristics that attempt to ascertain which local
conventions were used by the author of the FITS file.

As examples, files with media type ‘application/fits’ might contain any of the
following contents:

• An empty primary HDU (containing zero data elements) followed by a table HDU
that contains a catalog of celestial objects.

• An empty primary HDU followed by a table HDU that encodes a series of time-
tagged photon events from an exposure using an X-ray detector.

• An empty primary HDU followed by a series of IMAGE HDUs containing data
from an exposure taken by a mosaic of CCD detectors.

• An empty primary HDU followed by a series of table HDUs that contain a snapshot
of the state of a relational database.

• A primary HDU containing a single image along with keyword/value pairs of
metadata.

• A primary HDU with NAXIS1 = 0 and GROUPS = T followed by random groups
data records of complex fringe visibilities.

FITS Standard



G.2. MIME TYPE ‘IMAGE/FITS’ 111

G.2 MIME type ‘image/fits’

A FITS file described with the media type ‘image/fits’ should have a primary HDU
with positive integer values for the NAXIS and NAXISn keywords, and hence should con-
tain at least one pixel. Files with 4 or more non-degenerate axes (NAXISn > 1) should be
described as ‘application/fits’, not as ‘image/fits’. (In rare cases it may be appro-
priate to describe a NULL image – a dataless container for FITS keywords, with NAXIS

= 0 or NAXISn = 0 – or an image with 4+ non- degenerate axes as ‘image/fits’ but this
usage is discouraged because such files may confuse simple image viewer applications.)

FITS files declared as ‘image/fits’ may also have one or more conforming extension
HDUs following their primary HDUs. These extension HDUs may contain standard,
non-linear, world coordinate system (WCS) information in the form of tables or images.
The extension HDUs may also contain other, non-standard metadata pertaining to the
image in the primary HDU in the forms of keywords and tables.

A FITS file described with the media type ‘image/fits’ should be principally in-
tended to communicate the single data array in the primary HDU. This means that
‘image/fits’ should not be applied to FITS files containing multi-exposure-frame mo-
saic images. Also, random groups files must be described as ‘application/fits’ and
not as ‘image/fits’.

A FITS file described with the media type ‘image/fits’ is also valid as a file of
media type ‘application/fits’. The choice of classification depends on the context
and intended usage.

G.2.1 Recommendations for Application Writers

An application that is intended to handle ‘image/fits’ should be able to provide a
user with a manifest of all of the HDUs that are present in the file and with all of
the keyword/value pairs from each of the HDUs. An application writer may choose to
ignore HDUs beyond the primary HDU, but even in this case the application should be
able to present the user with the keyword/value pairs from the primary HDU.

Note that an application intended to render ‘image/fits’ for viewing by a user
has significantly more responsibility than an application intended to handle, e.g., ‘im-
age/tiff’ or ‘image/gif’. FITS data arrays contain elements which typically represent the
values of a physical quantity at some coordinate location. Consequently they need not
contain any pixel rendering information in the form of transfer functions, and there is
no mechanism for color look-up tables. An application should provide this functionality,
either statically using a more or less sophisticated algorithm, or interactively allowing
a user various degrees of choice.

Furthermore, the elements in a FITS data array may be integers or floating-point
numbers. The dynamic range of the data array values may exceed that of the display
medium and the eye, and their distribution may be highly nonuniform. Logarithmic,

FITS Standard



112 APPENDIX G. MIME TYPES

square-root, and quadratic transfer functions along with histogram equalization tech-
niques have proved helpful for rendering FITS data arrays. Some elements of the array
may have values which indicate that their data are undefined or invalid; these should be
rendered distinctly. Via WCS Paper I [11] the standard permits CTYPEn = ’COMPLEX’

to assert that a data array contains complex numbers (future revisions might admit
other elements such as quaternions or general tensors).

Three-dimensional data arrays (NAXIS = 3 with NAXIS1, NAXIS2 and NAXIS3 all
greater than 1) are of special interest. Applications intended to handle ‘image/fits’
may default to displaying the first 2D plane of such an image cube, or they may default
to presenting such an image in a fashion akin to that used for an animated GIF, or they
may present the data cube as a mosaic of ‘thumbnail’ images. The time-lapse movie-
looping display technique can be effective in many instances, and application writers
should consider offering it for all three-dimensional arrays.

An ‘image/fits’ primary HDU with NAXIS = 1 is describing a one-dimensional
entity such as a spectrum or a time series. Applications intended to handle ‘image/fits’
may default to displaying such an image as a graphical plot rather than as a two-
dimensional picture with a single row.

An application that cannot handle an image with dimensionality other than 2 should
gracefully indicate its limitations to its users when it encounters NAXIS = 1 or NAXIS

= 3 cases, while still providing access to the keyword/value pairs.

FITS files with degenerate axes (i.e., one or more NAXISn = 1) may be described
as ‘image/fits’, but the first axes should be non- degenerate (i.e., the degenerate
axes should be the highest dimensions). An algorithm designed to render only two-
dimensional images will be capable of displaying such an NAXIS = 3 or NAXIS = 4

FITS array that has one or two of the axes consisting of a single pixel, and an ap-
plication writer should consider coding this capability into the application. Writers of
new applications that generate FITS files intended to be described as ‘image/fits’
should consider using the WCSAXES keyword [14] to declare the dimensionality of such
degenerate axes, so that NAXIS can be used to convey the number of non-degenerate
axes.

G.3 File Extensions

The FITS standard originated in the era when files were stored and exchanged via
magnetic tape; it does not prescribe any nomenclature for files on disk. Various sites
within the FITS community have long-established practices where files are presumed
to be FITS by context. File extensions used at such sites commonly indicate content
of the file instead of the data format.

In the absence of other information it is reasonably safe to presume that a file name
ending in ‘.fits’ is intended to be a FITS file. Nevertheless, there are other commonly

FITS Standard



G.3. FILE EXTENSIONS 113

used extensions; e.g., ‘.fit’, ‘.fts’, and many others not suitable for listing in a media
type registration.

FITS Standard



114 APPENDIX G. MIME TYPES

FITS Standard



BIBLIOGRAPHY 115

Bibliography

[Note] Where indicated, the following references are available electronically from the
NASA Astrophysics Data System (ADS, http://adswww.harvard.edu) and/or
the FITS Support Office (FSO, http://fits.gsfc.nasa.gov) web sites.

[1] IAU 1983, Information Bulletin, No. 49

[2] Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, FITS: A Flexible Image
Transport System, A&AS, 44, 363 (ADS, FSO)

[3] Greisen, E. W. & Harten, R. H. 1981, An Extension of FITS for Small Arrays
of Data, A&AS, 44, 371 (ADS, FSO)

[4] Grosbøl, P., Harten, R. H., Greisen, E. W., & Wells, D. C. 1988, Generalized
Extensions and Blocking Factors for FITS, A&AS, 73, 359 (ADS, FSO)

[5] Harten, R. H., Grosbøl, P., Greisen, E. W., & Wells, D. C. 1988, The FITS
Tables Extension, A&AS, 73, 365 (ADS, FSO)

[6] IAU 1988, Information Bulletin, No. 61

[7] Wells, D. C. & Grosbøl, P. 1990, Floating Point Agreement for FITS (FSO)

[8] Ponz, J. D., Thompson, R. W., & Muñoz, J. R. 1994, The FITS Image Extension,
A&AS, 105, 53 (ADS, FSO)

[9] Cotton, W. D., Tody, D. B., & Pence, W. D. 1995, Binary Table Extension to
FITS, A&AS, 113, 159 (ADS, FSO)

[10] Bunclark, P. & Rots, A. 1997, Precise re-definition of DATE-OBS Keyword en-
compassing the millennium (FSO)

[11] Greisen, E. W. & Calabretta, M. R. 2002, Representations of World Coordinates
in FITS, A&A, 395, 1061 (ADS, FSO)

[12] Calabretta, M. R. & Greisen, E. W. 2002, Representations of celestial coordinates
in FITS, A&A 395, 1077 (ADS, FSO)

FITS Standard



116 BIBLIOGRAPHY

[13] RFC 4047 Allen, S. & Wells, D. 2005, MIME Sub-type Registra-
tions for Flexible Image Transport System (FITS), IETF RFC 4047,
http://www.ietf.org/rfc/rfc4047.txt

[14] Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen, S. L. 2006, Represen-
tations of spectral coordinates in FITS, A&A 446, 747 (ADS, FSO)

[15] Hanisch, R., et al. 2001, Definition of the Flexible Image Transport System
(FITS), A&A 376, 359 (ADS, FSO)

[16] RFC 2119 Bradner, S. 1997, Key words for use in RFCs to Indicate Requirement
Levels, IETF RFC 2119, http://www.ietf.org/rfc/rfc2119.txt

[17] ISO. 2004, Information technology – Programming languages – Fortran, ISO/IEC
1539-1:2004 (Geneva: International Organization for Standardization)

[18] Grosbøl, P. & Wells, D. C. 1994, Blocking of Fixed-block Sequential Media and
Bitstream Devices (FSO)

[19] McNally, D., ed. 1988, Transactions of the IAU, Proceedings of the Twentieth
General Assembly, (Dordrecht: Kluwer)

[20] ANSI. 1977, American National Standard for Information Processing: Code for
Information Interchange, ANSI X3.4–1977 (ISO 646) (New York: American Na-
tional Standards Institute, Inc.)

[21] IEEE. 1985, American National Standard — IEEE Standard for Binary Floating
Point Arithmetic, ANSI/IEEE 754–1985 (New York: American National Stan-
dards Institute, Inc.)

[22] Calabretta, M. R. & Roukema, B. F. 2007, Mapping on the HEALPix grid, A&A
submitted (ADS, FSO)

[23] Cotton, W. D., et al. 1990, Going AIPS: A Programmer’s Guide to the NRAO
Astronomical Image Processing System, (Charlottsesville: NRAO)

FITS Standard



INDEX 117

Index

Nbits, 30, 31, 43

angular units, 23
ANSI, 7
ANSI, IEEE, 40, 63

array descriptor, 64, 69
array size, 29, 31, 43, 44
array value, 7, 10, 35

array, multi-dimensional, 14
array, variable-length, 66, 69
ASCII character, 7, 39, 48, 51, 53, 99

ASCII table, 48, 115
ASCII text, 8, 14, 20, 21, 34, 53, 62, 99

ASCII, ANSI, 116
AUTHOR, 34

binary table, 11, 41, 55, 95, 115

BITPIX, 29–31, 36, 37, 40, 41, 43, 46,
48, 56

BLANK, 36, 40
BSCALE, 36, 40

BUNIT, 36
byte order, 39
BZERO, 36, 40

case sensitivity, 19, 21, 26, 50, 58
character string, 8, 21, 53, 61, 62

complex data, 23, 58, 63, 66
conforming extension, 8, 11, 13, 15, 16
coordinate system, 34

DATAMAX, 37
DATAMIN, 37

DATE, 32

DATE-OBS, 33

DATExxxx, 33
deprecate, 8, 13, 16, 17, 25, 33, 34, 41,

54, 74, 75

END, 14, 29, 43, 47, 49, 58, 68

EPOCH, 34
EQUINOX, 34
extension, 8, 9, 13, 15, 37, 39, 105

extension registration, 15, 30
extension type name, 8, 15, 30, 37
extension, conforming, 8, 11, 13, 15, 16

extension, standard, 11, 16
EXTLEVEL, 37
EXTNAME, 37

EXTVER, 37

field, empty, 56, 62

fill, 14, 19, 44, 51, 61
FITS structure, 8–10, 13, 17, 32
floating-point, 22, 63, 101

floating-point FITS agreement, 115
floating-point, complex, 23, 63
format, data, 39

format, fixed, 20
format, free, 20
format, keywords, 20

Fortran, 14, 49, 51, 53, 61, 116

GCOUNT, 31, 42–44, 46, 49, 56

group parameter value, 9, 43, 44
GROUPS, 42

HDU, 9, 29

FITS Standard



118 INDEX

HDU, extension, 8, 13
HDU, primary, 9, 10, 13, 14, 16
heap, 9, 31, 56, 58, 59, 61, 64, 67, 69
hyphen, 20, 50, 58

IAU, 1, 2, 9, 115
IAU Style Manual, 23, 116
IAUFWG, 1, 4, 9, 15, 16, 30, 105
IEEE floating-point, 40
IEEE NaN, 10
IEEE special values, 10, 37, 40, 101
image extension, 45, 115
INSTRUME, 34
integer, 16-bit, 39, 63
integer, 32-bit, 39, 63, 64
integer, 64-bit, 40, 63, 64
integer, 8-bit, 39, 62
integer, complex, 23

keyword record, 14, 19
keyword, commentary, 20, 34
keyword, indexed, 10, 20, 29
keyword, mandatory, 48
keyword, new, 37
keyword, order, 28, 30, 41, 48
keyword, required, 10, 28, 30, 41, 45, 55
keyword, reserved, 11, 32, 43
keyword, valid characters, 19

logical value, 21

mantissa, 9, 10

NaN, IEEE, 63
NAXIS, 14, 29–31, 42–44, 46, 49, 56
NAXIS1, 42, 49, 51, 56, 61, 68
NAXIS2, 49, 51, 56, 61, 68
NAXISn, 14, 29–31, 42–44, 46
NULL, ASCII, 7, 62

OBJECT, 34
OBSERVER, 34
offset, 67

order, byte, 39
order, extensions, 16
order, keyword, 19, 28, 30, 41, 48
order, FITS structures, 13
ORIGIN, 32

PCOUNT, 30, 31, 42–44, 46, 49, 56, 68
physical value, 7, 10, 35–37, 43, 44, 50,

51, 58
primary data array, 8, 10, 14, 41, 42, 44,

47

primary header, 8, 10, 28, 30, 41
PSCALn, 43, 44
PTYPEn, 43, 44
PZEROn, 43, 44

random groups, 9, 35, 41, 115
random groups array, 44
REFERENC, 34
repeat count, 11, 56, 62

scaling, data, 43, 44, 50, 58

sign bit, 39
sign character, 53
significand, 10
SIMPLE, 16, 28, 41
slash, 20
special records, 9, 11, 13, 16

special values, IEEE, 63
standard extension, 11, 16

TABLE, 48
TBCOLn, 49
TDIMn, 61
TDISPn, 51, 60
TELESCOP, 33

TFIELDS, 49, 56
TFORMn, 49, 56, 62–64, 67
THEAP, 61, 68
time system, 33
TNULLn, 51, 53, 59, 62, 63

TSCALn, 50, 58, 68

FITS Standard



INDEX 119

TTYPEn, 50, 58
TUNITn, 50, 58
two’s complement, 39, 40, 63
TZEROn, 50, 58, 68

underscore, 20
units, 10, 23, 36, 50, 58
Universal Time, 32

value, 32
value, undefined, 51, 53, 59
variable-length array, 66, 69

XTENSION, 8, 16, 30, 37, 45, 48, 55

FITS Standard


